Abstract
Let $\mathcal H$ be a Hilbert space. Given a bounded positive definite operator $S$ on $\mathcal H$, and a bounded sequence $\mathbf{c} = \{c_k \}_{k \in \mathbb N}$ of nonnegative real numbers, the pair $(S, \mathbf{c})$ is frame admissible, if there exists a frame $\{ f_k \}_{k \in \mathbb{N}} $ on $\mathcal H$ with frame operator $S$, such that $\|f_k \|^2 = c_k$, $k \in \mathbb {N}$. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair $(S, \mathbf{c})$ to be frame admissible.
Citation
J. Antezana. P. Massey. M. Ruiz. D. Stojanoff. "The Schur-Horn theorem for operators and frames with prescribed norms and frame operator." Illinois J. Math. 51 (2) 537 - 560, Summer 2007. https://doi.org/10.1215/ijm/1258138428
Information