Open Access
Summer 2007 The Schur-Horn theorem for operators and frames with prescribed norms and frame operator
J. Antezana, P. Massey, M. Ruiz, D. Stojanoff
Illinois J. Math. 51(2): 537-560 (Summer 2007). DOI: 10.1215/ijm/1258138428

Abstract

Let $\mathcal H$ be a Hilbert space. Given a bounded positive definite operator $S$ on $\mathcal H$, and a bounded sequence $\mathbf{c} = \{c_k \}_{k \in \mathbb N}$ of nonnegative real numbers, the pair $(S, \mathbf{c})$ is frame admissible, if there exists a frame $\{ f_k \}_{k \in \mathbb{N}} $ on $\mathcal H$ with frame operator $S$, such that $\|f_k \|^2 = c_k$, $k \in \mathbb {N}$. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair $(S, \mathbf{c})$ to be frame admissible.

Citation

Download Citation

J. Antezana. P. Massey. M. Ruiz. D. Stojanoff. "The Schur-Horn theorem for operators and frames with prescribed norms and frame operator." Illinois J. Math. 51 (2) 537 - 560, Summer 2007. https://doi.org/10.1215/ijm/1258138428

Information

Published: Summer 2007
First available in Project Euclid: 13 November 2009

zbMATH: 1137.42008
MathSciNet: MR2342673
Digital Object Identifier: 10.1215/ijm/1258138428

Subjects:
Primary: 42C15
Secondary: 46C05 , 47A05

Rights: Copyright © 2007 University of Illinois at Urbana-Champaign

Vol.51 • No. 2 • Summer 2007
Back to Top