Abstract
We define the $S^1$-equivariant Rabinowitz--Floer homology of a bounding contact hypersurface $\Sigma$ in an exact symplectic manifold, and show by a geometric argument that it vanishes if $\Sigma$ is displaceable.
Citation
Urs FRAUENFELDER. Felix SCHLENK. "$S^1$-equivariant Rabinowitz--Floer homology." Hokkaido Math. J. 45 (3) 293 - 323, October 2016. https://doi.org/10.14492/hokmj/1478487612
Information