Translator Disclaimer
August 2009 Grassmann geometry on the 3-dimensional unimodular Lie groups I
Jun-ichi INOGUCHI, Hiroo NAITOH
Hokkaido Math. J. 38(3): 427-496 (August 2009). DOI: 10.14492/hokmj/1258553972

Abstract

We study the Grassmann geometry of surfaces when the ambient space is a 3-dimensional unimodular Lie group with left invariant metric, that is, it is one of the 3-dimensional commutative Lie group, the 3-dimensional Heisenberg group, the groups of rigid motions on the Euclidean or the Minkowski planes, the special unitary group $SU(2)$, and the special real linear group $SL(2,\mathbb R)$.

Citation

Download Citation

Jun-ichi INOGUCHI. Hiroo NAITOH. "Grassmann geometry on the 3-dimensional unimodular Lie groups I." Hokkaido Math. J. 38 (3) 427 - 496, August 2009. https://doi.org/10.14492/hokmj/1258553972

Information

Published: August 2009
First available in Project Euclid: 18 November 2009

zbMATH: 1214.53016
MathSciNet: MR2548231
Digital Object Identifier: 10.14492/hokmj/1258553972

Subjects:
Primary: 53B25
Secondary: 53C30, 53C40

Rights: Copyright © 2009 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
70 PAGES


SHARE
Vol.38 • No. 3 • August 2009
Back to Top