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Abstract. We study the Grassmann geometry of surfaces when the ambient space

is a 3-dimensional unimodular Lie group with left invariant metric, that is, it is one

of the 3-dimensional commutative Lie group, the 3-dimensional Heisenberg group, the

groups of rigid motions on the Euclidean or the Minkowski planes, the special unitary

group SU(2), and the special real linear group SL(2,R).
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1. Introduction

Let (M, g) be an m-dimensional connected Riemannian homogeneous
manifold and Io(M, g) the identity component of the isometry group of
(M, g). Fix an integer r such that 1 ≤ r ≤ m and consider the Grass-
mann bundle Grr(TM) over M which consists of all r-dimensional linear
subspaces of the tangent spaces of M . Then the Lie group Io(M, g) acts on
Grr(TM) through the differentials of isometries and each Io(M, g)-orbitO in
Grr(TM) gives a homogeneous bundle over M . An r-dimensional connected
submanifold S of M is called an O-submanifold if all tangent spaces of S

belong to O, and the collection of O-submanifolds is called an O-geometry.
Such an O-geometry is collectively called the Grassmann geometry of orbital
type. A typical example of O-submanifold is an (extrinsic) homogeneous
submanifold which is defined as an orbit G(p) in M by a subgroup G of
Io(M, g) where p ∈ M . In the study of Grassmann geometry of orbital
type, the following two problems naturally arise: One is to consider whether
a given O-geometry is empty, or not; The other is to consider whether a
nonempty O-geometry has somewhat canonical O-submanifolds such as to-
tally geodesic submanifolds, minimal submanifolds, submanifolds of specific
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curvature and so on, or not. From the view of these points, the case when
(M, g) is a Riemannian symmetric space has been studied in H. Naitoh [11]
and J. Berndt-J. H. Eschenburg-H. Naitoh-K. Tsukada [2], so that the fun-
damental problems of Grassmann geometry have been settled for some kinds
of orbital geometries and by the settlement all the symmetric submanifolds
of Riemannian symmetric spaces have been completely classified.

Now in this paper we consider the case when (M, g) is a 3-dimensional
unimodular Lie group with left invariant metric. The Lie algebras of 3-
dimensional unimodular Lie groups have been all classified in J. Milnor
[10] and there are the following six ones: su(2), sl(2,R), the Lie algebras
e(2), e(1, 1) of the groups of rigid motions on the Euclidean plane or the
Minkowski plane, the Lie algebra h3 of the Heisenberg group, and the com-
mutative Lie algebra R3. Also, in the paper [12], V. Patrangenaru has
determined the isometry groups of (G, g) where G is a simply connected 3-
dimensional unimodular Lie group and g is an arbitrary left invariant metric
on G. Using these results, we consider the Grassmann geometry on (G, g) of
orbital type. Up to the present, the case of h3 and the cases of e(2), e(1, 1)
have been already considered in J. Inoguchi-K. Kuwabara-H. Naitoh [5] and
K. Kuwabara [9], respectively. We mainly consider the cases of su(2) and
sl(2,R) in this paper.

The contents of the paper are as follows. In Section 2, we recall Milnor’s
classification of 3-dimensional unimodular Lie algebras, and Patrangenaru’s
determination of the isometry groups of (G, g). In Section 3, we survey the
Grassmann geometry on a 3-dimensional unimodular Lie group with left
invariant metric, and overview the cases of h3, e(2) and e(1, 1).

In Section 4, we consider the case of su(2). The Grassmann geometry of
this case is divided into the following two cases; the case that the isotropy
subgroup of Io(G, g) at the unity is trivial, and the case that the isotropy
subgroup of Io(G, g) at the unity is SO(2). We call the first case the Grass-
mann geometry of trivial isotropy type, and the second case the Grassmann
geometry of isotropy type SO(2). For the case of trivial isotropy type, we
show that the Grassmann geometry is empty (Theorem 4.2). For the case
of isotropy type SO(2), we moreover divide the case into two cases and for
the Grassmann geometry of each case we clarify the geometric states of O-
surfaces, such as the existence of totally geodesic O-surfaces, flat O-surfaces,
and O-surfaces of constant mean curvature (Theorem 4.12).
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In Section 5, we consider the case of sl(2,R). The Grassmann geometry
of this case is, as the case of su(2), firstly divided into two cases of trivial
isotropy type and of isotropy type SO(2). Moreover the second case is
divided into 4 cases according to the difference of behaviors of Grassmann
geometry. For each case of trivial isotropy type and of isotropy type SO(2),
we also clarify similar geometric states to the case of su(2) (Theorem 5.8 and
Theorem 5.19 respectively). But in the case of isotropy type SO(2) there
remain a unsolved problem about the existence of O-surfaces of constant
mean curvature. We will affirmatively solve this problem in the forthcoming
paper II.

In Section 6, we first describe two common phenomena all over the
Grassmann geometry of 3-dimensional unimodular Lie groups, i.e., the rela-
tionship with a contact metric structure on (G, g) and the relationship with
the sectional curvature of (G, g). Next we propose some problems related
to the Grassmann geometry and lastly give the corrections for the paper [5]
on the Grassmann geometry of Heisenberg group. The results of the paper
[5] hold true, but there are some mistakes of calculations in it.

2. Left invariant metrics on unimodular Lie groups

2.1. Unimodular Lie groups
Let g be a finite dimensional Lie algebra over the field R of real num-

bers, furnished with the bracket product [·, ·]. A Lie algebra g is called
unimodular if for any X ∈ g, the adjoint transformation ad(X) of g has
the trace 0, and a connected Lie group G associated with g is also called
unimodular. If a Lie algebra g is 3-dimensional, we can naturally define the
cross product × on g by taking an inner product 〈, 〉 on g and by fixing an
orientation on g. Then there exists a unique linear transformation L of g

such that [X, Y ] = L(X × Y ) for X, Y ∈ g. In the paper [10], J. Milnor
showed that a 3-dimensional Lie algebra g is unimodular if and only if the
linear transformation L is symmetric with respect to 〈, 〉, and he classified
all the 3-dimensional unimodular Lie algebras g by considering the signa-
ture of eigenvalues of L. Let λ1, λ2, λ3 be the eigenvalues of L and take a
positively oriented orthonomal basis {E1, E2, E3} of g such that each Ei is
an eigenvector with eigenvalue λi. Then it follows

[E2, E3] = λ1E1, [E3, E1] = λ2E2, [E1, E2] = λ3E3 (2.1)
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and the classification of g is described as follows:

Signature of (λ1, λ2, λ3) Unimodular Lie algebra Description

(+, +, +) su(2) compact, simple

(−, +, +) sl(2,R) noncompact, simple

(+, +, 0 ) e(2) solvable

(−, +, 0 ) e(1, 1) solvable

( 0 , 0 , +) h3 nilpotent

( 0 , 0 , 0 ) R3 commutative

Here su(2) denotes the Lie algebra of the special unitary group SU(2),
sl(2,R) denotes the Lie algebra of the special real linear group SL(2,R), e(2)
denotes the Lie algebra of the group of rigid motions of Euclidean 2-space,
e(1, 1) denotes the Lie algebra of the group of rigid motions of Minkowski
2-space, h3 denotes the Lie algebra of the Heisenberg group H3 of all 3× 3
real matrices of the form

[
1 ∗ ∗
0 1 ∗
0 0 1

]
, and R3 denotes the 3-dimensional com-

mutative Lie algebra. Also, we note that in the above list, the order of
signatures can be replaced by suitable changes of the orientation on g or the
numbering of Ei’s.

Let (g, 〈, 〉) be a Lie algebra with inner product and G a connected Lie
group with the Lie algebra g, and identify g with the Lie algebra of left
invariant vector fields on G which are vector fields preserved by the left
translations of G. Then g is also identified with the tangent space TeG at
the unit element e of G, and there exists a unique Riemannian metric g on
G such that ge = 〈, 〉 and g is preserved by the left translations of G. This
metric g is called a left invariant metric on G. The Riemannian manifold
(G, g) is obviously a Riemannian homogeneous space, and the Riemannian
connection ∇ can be calculated by Christoffel’s formula as follows:

∇Xi
Xj = (1/2)

∑

k

(αijk − αjki + αkij)Xk

where {X1, X2, · · · , Xn} is an orthonormal basis of g and αijk’s are the
constants satisfying [Xi, Xj ] =

∑
k αijkXk, which are called the structure

constants of [·, ·]. In particular, if (G, g) is a 3-dimensional unimodular Lie
group, it holds by (2.1) that
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∇E1E2 =
1
2
(−λ1 + λ2 + λ3)E3, ∇E2E1 =

1
2
(−λ1 + λ2 − λ3)E3,

∇E2E3 =
1
2
(λ1 − λ2 + λ3)E1, ∇E3E2 =

1
2
(−λ1 − λ2 + λ3)E1,

∇E3E1 =
1
2
(λ1 + λ2 − λ3)E2, ∇E1E3 =

1
2
(λ1 − λ2 − λ3)E2,

∇Ei
Ej = 0 for other i, j. (2.2)

Moreover, from (2.2), we can calculate the curvatures of (G, g) at e as follows.
The Ricci quadratic form r is diagonalized by the eigenvectors E1, E2, E3,
together with the following principal Ricci curvatures

r(E1, E1) = 2µ2µ3, r(E2, E2) = 2µ3µ1, r(E3, E3) = 2µ1µ2 (2.3)

where λi = µ1 + µ2 + µ3 − µi for i = 1, 2, 3. The scalar curvature ρ is given
by the equation ρ = 2(µ2µ3 +µ3µ1 +µ1µ2). The sectional curvature K(u, v)
of the plane generated by linearly independent orthonormal vectors u, v can
be calculated by the general formula

K(u, v) = ‖u× v‖2ρ/2− r(u× v, u× v) (2.4)

for any 3-dimensional Riemannian manifold. (Refer to [10] for the detail).
For each unimodular Lie algebra, these curvatures will be concretely given
in the later case by case argument.

2.2. The special unitary group SU(2)
Next, for a 3-dimensional unimodular Lie group G, we give the set

Λ(g) of isometry classes of left invariant metrics g on G and the dimension
of isometry group d(I(G, g)) for each (G, g) when G is simply connected.
These have been already given in [12].

Let G be a connected Lie group with the Lie algebra su(2). Then the
set Λ(su(2)) of isometry classes is bijective to the set {(λ1, λ2, λ3) : 0 <

λ1 ≤ λ2 ≤ λ3}, and when G is moreover simply connected, the dimension
d(I(G, g)) is given in the following according to the isometry class of (G, g).
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d(I(G, g)) =





3 if λ1 < λ2 < λ3

4 if λ1 = λ2 < λ3 or λ1 < λ2 = λ3

6 if λ1 = λ2 = λ3

.

In the case when λ1 = λ2 = λ3 = λ, the coresponding g is isometric to the
standard metric on the 3-sphere S3 of constant curvature λ2/4.

2.3. The special real linear group SL(2,R)
Let G be a connected Lie group with the Lie algebra sl(2,R). Then the

set Λ(sl(2,R)) of isometry classes is bijective to the set {(λ1, λ2, λ3) : λ1 <

0 < λ2 ≤ λ3}, and when G is moreover simply connected, the dimension
d(I(G, g)) is given in the following according to the isometry class of (G, g).

d(I(G, g)) =

{
3 if λ1 < 0 < λ2 < λ3

4 if λ1 < 0 < λ2 = λ3

.

Note that the metric g with λ2 = λ3 is isometric to the so-called Sasaki lift
metric on the unit tangent sphere bundle of a hyperbolic 2-space. (cf. [14]).

2.4. The group of rigid motions on Euclidean 2-space
Let G be a connected Lie group with the Lie algebra e(2). Then the

set Λ(e(2)) of the isometry classes is bijective to the set {(λ1, λ2, 0) : 0 <

λ1 < λ2 or λ1 = λ2 = 1}, and when G is moreover simply connected, the
dimension d(I(G, g)) is given in the following according to the isometry class
of (G, g).

d(I(G, g)) =

{
3 if 0 < λ1 < λ2

6 if λ1 = λ2 = 1
.

In the case when λ1 = λ2 = 1, the corresponding g is isometric to the
Euclidean metric on the Euclidean 3-space E3.

2.5. The group of rigid motions on Minkowski 2-space
Let G be a connected Lie group with the Lie algebra e(1, 1). Then the set

Λ(e(1, 1)) of isometry classes is bijective to the set {(λ1, λ2, 0) : −λ2 ≤ λ1 <

0 < λ2}, and when G is moreover simply connected, the dimension d(I(G, g))
is equal to 3 for any g. The metric g with λ1 = −λ2 is of particular interest.
In fact, the simply connected Riemannian homogeneous manifold (G, g) is
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isometric to the space Sol3 of solvegeometry in the sense of W. Thurston
[16].

2.6. The Heisenberg group H3

Let G be a connected Lie group with the Lie algebra h3. Then the set
Λ(h3) of isometry classes is bijective to the set {(0, 0, λ3) : 0 < λ3}, and
when G is moreover simply connected, the dimension d(I(G, g)) is equal to
4 for any g.

2.7. The commutative group R3

If G has the commutative Lie algebra R3, any left invariant metric g is
locally isometric to the Euclidean metric on E3.

3. Grassmann geometry on simply connected unimodular Lie
groups

In this section we consider the Grassmann geometry for surfaces of a
3-dimensional simply connected unimodular Lie group with a left invariant
metric. Let G be a 3-dimensional simply connected unimodular Lie group
and g a left invariant metric on G. Denote by Io(G, g) the connected compo-
nent of the isometry group I(G, g) containing the identity. We take an orbit
O in Gr2(TG) under the action of Io(G, g). As described in Introduction,
Gr2(TG) is the Grassmann bundle over G of all 2-planes tangent to G and
Io(G, g) naturally acts on Gr2(TG) through isometries of (G, g). Also, since
(G, g) is a Riemannian homogeneous space, the orbit O is a homogeneous
bundle over G with respect to Io(G, g). In this case an O-surface is by defi-
nition a connected surface S in G such that TxS ∈ O for any x ∈ S and the
O-geometry is the collection of such the O-surfaces.

In this study of Grassmann geometry, our aims are to determine whether
a givenO-geometry is empty or not and next if it is not empty, to see whether
it has somewhat canonicalO-surfaces, e.g., minimal surfaces or parallel mean
curvature surfaces, or not. To this end, we divide our argument into three
cases: (i) dim Io(G, g) = 3, (ii) dim Io(G, g) = 4, and (iii) dim Io(G, g) = 6.

In the case (i), Io(G, g) consists of all left translations of G. Hence an
Io(G, g)-orbit O induces a distribution on G which is constructed by the
left translations of the unique plane Π ⊂ TeG which belongs to O. So, the
orbit space of Io(G, g)-orbits is diffeomorphic to the Grassmann manifold
Gr2(TeG) of all 2-planes in Te(G), which is also diffeomorphic to the real



434 J. Inoguchi and H. Naitoh

projective plane RP 2. In this case an O-geometry is not empty if and only
if the distribution on G corresponding to O is involutive.

In the case (ii), Io(G, g) is the semi-direct of the group of left translations
of G and the 1-dimensional isotropy subgroup Ko in Io(G, g) defined by
putting Ko = {ϕ ∈ Io(G, g) : ϕ(e) = e}, where Ko is isomorphic to SO(2).
Hence an Io(G, g)-orbit O is a homogeneous bundle over G with a Ko-orbit
in Gr2(TeG) as the fiber of e, and so the orbit space of Io(G, g)-orbits is
diffeomorphic to the quotient space Ko\Gr2(TeG). Since the Ko-action on
Te(G) is equivalent to a standard SO(2)-action on R3, we can see that
this quotient space is also diffeomorphic to the interval [0, 1]. In this case
an O-geometry is not empty if and only if there exists an involutive local
section of the homogeneous bundle O over G. In fact, if there exists such
an involutive local section, the leaves of its distribution are all O-surfaces,
and the converse also holds true by the following lemma.

Lemma 3.1 Let (M, g) be a homogeneous Riemannian manifold and S a
submanifold in M . Take a point p ∈ S. Then there exists an involutive local
distribution D around p such that all the leaves of D are locally congruent
to S.

Proof. Define a mapping φ of Io(M, g) to M by putting φ(f) = f(p) for
f ∈ Io(M, g). Since (M, g) is a homogeneous Riemannian manifold, the
mapping φ is surjective and the differential φ∗id of φ at the identity map id

is also a linear mapping of Tid(Io(M, g)) onto TpM . We can now take a local
submanifold P of Io(M, g) through id such that the mapping Φ : P×S → M

defined by putting Φ(f, q) = f(q) for (f, q) ∈ P×S is a local diffeomorphism
around (id, p). Then, through Φ, the distribution TS on P × S induces the
desired local distribution on M around p. ¤

In the case (iii), Io(G, g) is the semi-direct of the group of left transla-
tions of G and the 3-dimensional isotropy subgroup Ko in Io(G, g), where Ko

is isomorphic to SO(3). Since Ko acts transitively on Gr2(TeG), an Io(G, g)-
orbit O is only one, thus, there exists only one O-geometry on (G, g). In
this case, any surface in G is an O-surface.

According to the cases (i), (ii), and (iii), we call each case the Grassmann
geometry of trivial isotropy type, of isotropy type SO(2), and of isotropy type
SO(3), respectively.

In the papers [9], the Grassmann geometry for the cases g = e(2) and
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e(1, 1) has been studied. The Grassmann geometry for these cases is of
trivial isotropy type. Also, in the paper [5], the one for the case g = h3

has been studied. In this case the Grassmann geometry is of isotropy type
SO(2). The Grassmann geometry of isotropy type SO(3) is just the surface
theory of E3 or S3. We here overview the results in the papers [9] and [5].

3.1. Grassmann geometry for the case g = e(2)
Let G be a simply connected Lie group whose Lie algebra g = e(2)

and g a left invariant metric on G determined by the the orthonormal basis
{E1, E2, E3} with 0 < λ1 < λ2 and λ3 = 0. In this case dim Io(G, g) = 3,
thus, the Grassmann geometry on (G, g) is of trivial isotropy type. Hence
the orbit space of Io(G, g)-orbits is given by Gr2(TeG), denoted by Gr2(g).

Let S2(g) be the unit sphere in g centered at the origin and for W ∈
S2(g), let P (W ) denote the linear plane orthogonal to W . The mapping
P : S2(g) → Gr2(g) induces the bijection P : RP 2(g) → Gr2(g). Now for
W ∈ S2(g) let O(P (W )) be the Io(G, g)-orbit containing the 2-plane P (W ).
Then we have the following theorem.

Theorem 3.2 (Kuwabara [9]) Let G be a simply connected Lie group
with the Lie algebra e(2) and g a left invariant metric on G. Take λi,
Ei (i = 1, 2, 3) corresponding to g as in Section 2 and assume that 0 <

λ1 < λ2 and λ3 = 0. Then, the O(P (W ))-geometry is non-empty if and
only if P (W ) = P (E3). Moreover, any O(P (E3))-surface S is a minimal
flat surface in G without geodesic points and the tangent planes of S have
constant positive sectional curvature (λ1 − λ2)2/4 of (G, g).

Remark 3.3 In this case, since the orbit O(P (E3)) gives a left invariant
distribution on G, the maximalO(P (E3))-surfaces are homogeneous surfaces
in G which are congruent to each other, in particular, they are complete.
Moreover, they are diffeomorphic to R2 since G is the universal covering
of E(2) diffeomorphic to R3 and the distribution is generated by the left
invariant vector fields E1 and E2 which satisfy [E1, E2] = 0. According to
[6], the O(P (E3))-surfaces are the only surfaces in G with parallel second
fundamental form. Thus in G, the class of nonempty O(W )-surfaces is
identical to the class of parallel surfaces.

Remark 3.4 For W ∈ S2(g), the sectional curvature K(P (W )) of (G, g)
is by the formulas (2.3) and (2.4) as follows:
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K(P (W )) = − (λ1 − λ2)2

4
− λ2

1 − λ2
2

2
〈W,E1〉2

− λ2
2 − λ2

1

2
〈W,E2〉2 +

(λ1 − λ2)2

2
〈W,E3〉2,

where the principal Ricci curvatures are given by the equations

r(E1, E1) =
λ2

1 − λ2
2

2
, r(E2, E2) =

λ2
2 − λ2

1

2
, r(E3, E3) = − (λ1 − λ2)2

2
.

Then K(P (E3)) is a critical value of the curvature function K(P (W )) on
S2(g) which is neither the maximum nor the minimum.

3.2. Grassmann geometry for the case g = e(1,1)
Next let G be a simply connected Lie group whose Lie algebra g is

e(1, 1) and g a left invariant metric on G. We retain the same notations
as in Section 2 and the previous Subsection 3.1, and in this case assume
that −λ2 ≤ λ1 < 0 < λ2 and λ3 = 0. Then, since dim Io(G, g) = 3, the
Grassmann geometry on (G, g) is of trivial isotropy type and so the orbit
space of Io(G, g)-orbits is bijective to Gr2(g). Consider a G-orbit O(P (W ))
for W ∈ S2(g). Then we have the following theorem.

Theorem 3.5 (Kuwabara [9]) Let G be a simply connected Lie group
with the Lie algebra e(1, 1) and g a left invariant metric on G. Take λi,
Ei (i = 1, 2, 3) corresponding to g as in Section 2 and assume that −λ2 ≤
λ1 < 0 < λ2 and λ3 = 0. Then, for W ∈ S2(g), the O(P (W ))-geometry is
non-empty if and only if W satisfies the equation

λ1〈W,E1〉2 + λ2〈W,E2〉2 = 0. (3.5)

Moreover, for such an O(W )-geometry, an O(W )-surface is a minimal sur-
face in G of constant nonpositive curvature λ2(λ1 − λ2)〈W,E2〉2, where
0 ≤ 〈W,E2〉2 ≤ λ1/(λ1 − λ2). In particular an O(W )-geometry has a flat
surface if and only if P (W ) = P (E3). Also, an O(W )-geometry has a to-
tally geodesic surface if and only if g satisfies that λ1 + λ2 = 0 and P (W )
is either of P

(
1√
2
(E1 ± E2)

)
.

Remark 3.6 In this case the Grassmann geometry is of trivial isotropy
type. Hence, by the same reason as in Remark 3.3 of the e(2) case, we can see
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that for a non-empty O(P (W ))-geometry, the maximal O(P (W ))-surfaces
are homogeneous surfaces in G which are congruent to each other.

Analogous to the case g = e(2), the class of non-empty O(W )-surfaces
coincides with the class of parallel surfaces. See [6].

Remark 3.7 In this case, the sectional curvature K(P (W )) of (G, g) is
given by the same form as for the case e(2). Hence, if an O(P (W ))-geometry
is not empty, it holds

(
λ2 + (3 + 2

√
2)λ1

)(
λ2 + (3− 2

√
2)λ1

)
/4 ≤ K(P (W )) ≤ (λ1 − λ2)2/4.

Note that the set of O(P (W ))-orbits whose geometries are non-empty is
identified with two projective lines in RP 2. Because the equation (3.5) is
decomposed into the product of two linear equations. Then, the common
point of the projective lines corresponds to just the O(P (E3))-orbit whose
geometry has a flat surface, and moreover the sectional curvature K(P (E3))
attains the maximum value (λ1−λ2)2/4 in the above inequality, which also
gives the maximum of the curvature function K(P (W )) on S2(g). Also, in
the case when λ1 +λ2 = 0, the sectional curvatures K

(
P

(
1√
2
(E1±E2)

))
for

the O(P (W ))-orbits whose geometries have totally geodesic surfaces attain
the minimum value −λ2

1 in the above inequality.

3.3. Grassmann geometry for the case g = h3

Next let G be a simply connected Lie group whose Lie algebra g is h3.
Then G is isomorphic to the Heisenberg group H3. Let g be a left invariant
metric on G. We retain the same notations as in Section 2 and the Subsection
3.1, and assume that λ1 = λ2 = 0 and λ3 > 0. Then, since dim Io(G, g) = 4,
the Grassmann geometry on (G, g) is of isotropy type SO(2) and the action
of the isotropy Ko on g is given by the SO(2)-action on the (E1E2)-plane.
Hence the orbit space of Io(G, g)-orbits is bijective to the quotient space
SO(2)\Gr2(g), which is moreover identified with SO(2)\RP 2(g). Consider
a G-orbit O(P (W )) for W ∈ S2(g). Then, for W , W ′ ∈ S2(g), it holds
that O(P (W )) = O(P (W ′)) if and only if there exists T ∈ SO(2) such that
T (W ) = W ′. Hence we can parametrize the orbit space of Io(G, g)-orbits
by the height h of W from the (E1E2)-plane, which is defined by putting
h = 〈W,E3〉 where 0 ≤ h ≤ 1. We here remark that the orbit space can
be also parametrized by the sectional curvature K(P (W )). In fact, by the
formula (2.4), the sectional curvature K(P (W )) is given as follows:
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K(P (W )) =
λ2

3

4
(〈W,E1〉2 + 〈W,E2〉2 − 3〈W,E3〉2)

=
λ2

3

4
(1− 4h2). (3.6)

In the previous paper [5], the parametrization of the orbit space is given by
the sectional curvature, but we here use the height h as its parametrization.
Denote by O(h) the Io(G, g)-orbit which contains the planes P (W ) for the
elements W in S2(g) with height h. Then we have the following theorem.

Theorem 3.8 (Inoguchi, Kuwabara and Naitoh [5]) Let G be a simply
connected Lie group with Lie algebra h3 and g a left invariant metric on
G. Take λi, Ei (i = 1, 2, 3) corresponding to g as in Section 2 and assume
that λ1 = λ2 = 0 and λ3 > 0. Then, for h ∈ [0, 1], the O(h)-geometry is
non-empty if and only if h 6= 1. Moreover the following (i) and (ii) hold :
( i ) Let S be an O(0)-surface in G. Then S is a flat surface with no geodesic

point. Also, S is a minimal surface (resp. a surface of nonzero constant
mean curvature) if and only if it is a part of a Hopf cylinder over a
straight line (resp. a circle) in the u1u2-plane;

( ii ) Let 0 < h < 1. Then an O(h)-surface S in G has constant negative
curvature −λ3

2h2 and it has no geodesic point. Also, there exists no
O(h)-surface of constant mean curvature.

Remark 3.9 In the statement (i) of Theorem 3.8, the notations ui (i =
1, 2, 3) denote the global coordinate functions on the Heisenberg group H3

defined by the relation

x = exp(u1(x)E1 + u2(x)E2 + u3(x)E3)

for x ∈ H3, and a Hopf cylinder means a surface defined by the set
{(u1, u2, u3) : (u1, u2) ∈ γ} for some curve γ in the (u1u2)-plane. We here
remark that the O(0)-surfaces are nothing but the Hopf cylinders and more-
over the O(0)-geometry is just the same as the geometry of Hopf cylinders
in the Euclidean (u1u2u3)-space. Hopf cylinders of constant mean curvature
are characterized as the only surfaces in G with parallel second fundamen-
tal form. Note that Heisenberg group G does not contain totally geodesic
surfaces. See [1].

Remark 3.10 In this case, by (3.6) the sectional curvature K(P ) of (G, g)
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satisfies the inequality −3λ3
2/4 ≤ K(P ) ≤ λ3

2/4. If P ∈ O(0), the sectional
curvature K(P ) attains the maximum value λ3

2/4 and if P ∈ O(1), it attains
the minimum value −3λ3

2/4.

Remark 3.11 There are simple mistakes of calculations in the argument
of the paper [5]. They are related to the statement (ii) in Theorem 3.8
though the statement holds true. In the last of this paper we will give the
corrections for them.

4. Grassmann geometry on the special unitary group SU(2)

Let G be a simply connected Lie group with the Lie algebra su(2). Then
G is isomorphic to SU(2). In this section we take a left invariant metric
g on G and consider the Grassmann geometry on SU(2), first the case of
trivial isotropy type and next the case of isotropy type SO(2). We again
retain the notations in Section 2 and Section 3.

4.1. Grassmann geometry of trivial isotropy type
In this subsection we assume that the triple (λ1, λ2, λ3) satisfies the

condition 0 < λ1 < λ2 < λ3. Recall that the principal Ricci curvatures of
(G, g) are generally given by the following formulas

r(E1, E1) = 2µ2µ3, r(E2, E2) = 2µ3µ1, r(E3, E3) = 2µ1µ2

where µ1 = 1
2 (−λ1+λ2+λ3), µ2 = 1

2 (λ1−λ2+λ3), and µ3 = 1
2 (λ1+λ2−λ3).

In this case, by the condition 0 < λ1 < λ2 < λ3, the following two cases
occur: the case (i) that the principal Ricci curvatures are all distinct, and
the case (ii) that λ1 + λ2 = λ3 and it holds r(E1, E1) = r(E2, E2) = 0 and
r(E3, E3) = 2λ1λ2. The following lemma holds for both cases.

Lemma 4.1 For both cases (i) and (ii) the Grassmann geometry on (G, g)
is of trivial isotropy type.

Proof. We note that Ko is connected since Io(G, g) is so. We first consider
the case (i). Take any ϕ ∈ Ko. Then since ϕ preserves the Ricci quadratic
form r, it follows that ϕ(Ei) = ±Ei for i = 1, 2, 3. Then ϕ is the identity
since Ko is connected. This implies that Ko is trivial. We next consider
the case (ii). Denote by R the curvature tensor of (G, g) and by ∇R its
covariant derivative. Then, by (2.2), it follows
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(∇E1R)(E1, E2)E1 = 2λ1λ
2
2E3, (∇E1R)(E3, E1)E1 = −2λ1λ

2
2E2,

(∇E2R)(E1, E2)E2 = 2λ2
1λ2E3, (∇E2R)(E2, E3)E1 = 2λ2

1λ2E2,

(∇Ei
R)(Ej , Ek)E` = 0 for other i, j, k, `.

Take any ϕ ∈ Ko. Then we may suppose that ϕ∗e has the following form:

ϕ∗e(E1) = cos θE1 + sin θE2, ϕ∗e(E2) = − sin θE1 + cos θE2,

ϕ∗e(E3) = E3.

for some θ. (See the proof of Lemma 4.4 in the next Subsection 4.2.) Using
the above results on ∇R, we calculate (∇ϕ∗(E1)R)(ϕ∗(E1), ϕ∗(E2))ϕ∗(E1)
and ϕ∗{(∇E1R)(E1, E2)E1} as follows:

(∇ϕ∗(E1)R)(ϕ∗(E1), ϕ∗(E2))ϕ∗(E1) =
{
2λ1λ

2
2 cos2 θ + 2λ2

1λ2 sin2 θ
}
E3,

ϕ∗{(∇E1R)(E1, E2)E1} = 2λ1λ
2
2E3.

Since ϕ is an isometry, these vectors coincide and it follows that λ2 cos2 θ +
λ1 sin2 θ = λ2, thus, (λ1 − λ2) sin2 θ = 0. Since λ1 6= λ2, it holds sin θ = 0,
and since Ko is connected, it follows ϕ = 1. This implies that Ko is also
trivial. ¤

Now the following result holds for the Grassmann geometry of this type.

Theorem 4.2 Let G be a simply connected Lie group with the Lie algebra
su(2) and g a left invariant metric on G which satisfies the condition 0 <

λ1 < λ2 < λ3. Then for any W ∈ S2(g), the O(P (W ))-geometry is empty.

Proof. Let D(W ) be the left invariant distribution on G defined by the
O(P (W ))-orbit and take a basis {U, V } of the distribution D(W ) such that
U × V = W . Then, since it holds that 〈[U, V ],W 〉 = 〈L(W ),W 〉, the
distributionD(W ) on G is involutive if and only if it holds that 〈L(W ),W 〉 =
0. But, in this case, it does not occur since λi > 0 for all i. In fact, it follows
that

〈L(W ),W 〉 = λ1〈W,E1〉2 + λ2〈W,E2〉2 + λ3〈W,E3〉2.

Hence, any O(P (W ))-geometry is empty. ¤
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Remark 4.3 (1) For a general case of trivial isotropy type, it holds that
an O(P (W ))-geometry is not empty if and only if 〈L(W ),W 〉 = 0.

(2) The nonexistence of surfaces with parallel second fundamental form
in G with 0 < λ1 < λ2 < λ3 is obtained in [7].

4.2. Grassmann geometry of isotropy type SO(2)
Next we consider the cases that 0 < λ1 = λ2 < λ3 or that 0 < λ1 <

λ2 = λ3. In these cases the corresponding left invariant metrics g on SU(2)
are called the Berger metrics (cf. [3]). We first consider the case that
0 < λ1 = λ2 < λ3, where we put λ1 = λ2 = λ.

Set G = SU(2) and let g be a left invariant metric on G of this case. We
study the isotropy Ko in Io(G, g). In this case the principal Ricci curvatures
of (G, g) are given in the following.

r(E1, E1) =
1
2
λ3(2λ− λ3), r(E2, E2) =

1
2
λ3(2λ− λ3), r(E3, E3) =

1
2
λ2

3,

where, since λ 6= λ3, it holds that r(E1, E1) = r(E2, E2) 6= r(E3, E3). Then
the following holds.

Lemma 4.4 The Grassmann geometry of this case is of isotropy type
SO(2).

Proof. Let ϕ ∈ Ko. Since ϕ is an isometry, its differential ϕ∗e preserves the
eigenspaces of the Ricci quadratic form r. Hence ϕ∗e ∈ O(2)× {±1} where
O(2) denotes the orthogonal group of the (E1E2)-plane and ±1 the identity
or minus the identity on the E3-line, and so it follows that Ko ⊂ O(2)×{±1}.
Note that Ko is connected since Io(G, g) is so. Then ϕ∗e has the following
form:

ϕ∗e(E1) = cos θE1 + sin θE2, ϕ∗e(E2) = − sin θE1 + cos θE2,

ϕ∗e(E3) = E3.

for some θ. Conversely suppose that a linear isometry φ of g has this form.
Then we can see that φ is an automorphism of the Lie algebra g. Since
G is simply connected, φ induces a unique automorphism ρ of G such that
dρ = φ, and moreover, since φ is an isometry, ρ preserves the left invariant
metric g. Hence it follows that ρ ∈ Ko. These imply that the Ko-action on
g is the SO(2)-action on the (E1E2)-plane. ¤
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By this lemma, our Grassmann geometry is the same type as the ones
for the Heisenberg case in the Subsection 3.3, and so the orbit space of
Io(G, g)-orbits is the quotient space SO(2)\RP 2(g). In the following, simi-
larly to the Heisenberg case, we use the height h from the (E1E2)-plane as
a parametrization of the orbit space. Then O(h) where 0 ≤ h ≤ 1 expresses
the Io(G, g)-orbit which contains the planes P (W ) for the elements W in
S2(g) with height h.

4.2.1 Existence of Grassmann geometry
We first consider the case of O(1)-orbit. In this case, since h = 1, it

follows that O(1) = O(P (E3)) and Ko(P (E3)) = {P (E3)}. Hence the orbit
O(1) induces a unique left invariant distribution on G. Similarly to the case
of trivial isotropy type, we have the following proposition.

Proposition 4.5 The O(1)-geometry is empty.

Proof. By Remark 4.3, the O(1)-geometry is empty if and only if
〈L(E3), E3〉 6= 0. In this case 〈L(E3), E3〉 = λ3 6= 0. ¤

Before we consider the O(h)-geometries where h 6= 1, we recall a local
coordinate system of SU(2) diffeomorphic to S3. Let S3 regard the unit
sphere in Euclidena 4-space R4 centered at the origin of R4 and consider the
correspondence:

S3 3 (x, y, z, w) →
(

x + iy z + iw
−z + iw x− iy

)
∈ SU(2).

Set D = {(y, z, w) ∈ R3 : y2 + z2 +w2 < 1} and put x =
√

1− y2 − z2 − w2

on D. The mapping D 3 (y, z, w) 7−→ (x, y, z, w) ∈ S3 gives a local co-
ordinate system of S3 on D. We regard this as a local coordinate system
of SU(2) through the above correspondence. Then the origin (0, 0, 0) in D

corresponds to the unit e in SU(2). Let ei (i = 1, 2, 3) be the elements in
g = su(2) defined by the equations

e1 =
√

λλ3

2

(
i 0
0 −i

)
, e2 =

√
λλ3

2

(
0 1
−1 0

)
, e3 =

λ

2

(
0 i
i 0

)

and Êi (i = 1, 2, 3) the vector fields of SU(2) defined by putting Êi(q) = q ·ei

for q ∈ SU(2). Then the vector fields Êi are left invariant and they satisfy
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the following relations

[
Ê1, Ê2

]
= λ3Ê3,

[
Ê2, Ê3

]
= λÊ1,

[
Ê3, Ê1

]
= λÊ2.

In the following we identify the vector fields Êi with the elements Ei ∈ g.
Then, the following holds on D.

(E1, E2, E3) =
(

∂

∂y
,

∂

∂z
,

∂

∂w

)



√
λλ3
2 x −

√
λλ3
2 w λ

2 z
√

λλ3
2 w

√
λλ3
2 x −λ

2 y

−
√

λλ3
2 z

√
λλ3
2 y λ

2 x


 . (4.7)

Now we consider the O(h)-geometry on SU(2) where h 6= 1. In this case
the set O(h)∩Gr2(g) is identified with the circle in S2(g) which consists of
the unit vectors with height h. For a local function θ on an open set O in
G = SU(2)), set

X(q) = h sin(θ(q))E1(q)− h cos(θ(q))E2(q) +
√

1− h2E3(q),

Y (q) = cos(θ(q))E1(q) + sin(θ(q))E2(q),

N(q) =
√

1− h2 sin(θ(q))E1(q)−
√

1− h2 cos(θ(q))E2(q)− hE3(q)

(4.8)

where q ∈ O, and moreover put Pq = RX(q)⊕RY (q) where q ∈ O and Dθ =
{Pq : q ∈ O}. Then the set {X, Y,N} is an orthonormal frame of vector
fields on O, the planes Pq belong to O(h), and Dθ gives the distribution on O

generated by the planes Pq. By Lemma 3.1, theO(h)-geometry is non-empty
if and only if there exist an open set O in G and a function θ on O such that
Dθ is involutive. We may here suppose that O is a neighbourhood of the
unity e which is contained in the domain D, since (G, g) is a Riemannian
homogeneous space.

We now study a necessary and sufficient condition that Dθ is involutive.
By the definition of involutivity it is the condition that g([X, Y ], N) = 0,
thus,

h
√

1− h2 sin θ(E1θ)− h
√

1− h2 cos θ(E2θ)

+ (1− h2)(E3θ) + λ(1− h2) + λ3h
2 = 0. (4.9)
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Rewriting this in terms of x, y, z, w by (4.7), we have the following quasi-
linear partial differential equation (shortly PDE) of the first order with un-
known function θ:

{√
λ3

λ
h
√

1− h2x sin θ +

√
λ3

λ
h
√

1− h2w cos θ + (1− h2)z
}(

∂θ

∂y

)

+
{√

λ3

λ
h
√

1− h2w sin θ −
√

λ3

λ
h
√

1− h2x cos θ − (1− h2)y
}(

∂θ

∂z

)

+
{
−

√
λ3

λ
h
√

1− h2z sin θ −
√

λ3

λ
h
√

1− h2y cos θ + (1− h2)x
}(

∂θ

∂w

)

+ 2(1− h2) + 2
λ3

λ
h2 = 0. (4.10)

Let us consider the existence of solutions for this equation. The charac-
teristic ordinary differential equations (shortly ODE’s) associated with this
equation are given in the following.

dy

dt
=

√
λ3

λ
h
√

1− h2x sin θ +

√
λ3

λ
h
√

1− h2w cos θ + (1− h2)z, (4.11)

dz

dt
=

√
λ3

λ
h
√

1− h2w sin θ −
√

λ3

λ
h
√

1− h2x cos θ − (1− h2)y,

dw

dt
= −

√
λ3

λ
h
√

1− h2z sin θ −
√

λ3

λ
h
√

1− h2y cos θ + (1− h2)x,

dθ

dt
= −2(1− h2)− 2

λ3

λ
h2. (4.12)

Take an initial plane Q, initial values of solutions x, y, z, w and an initial
function of θ when t = 0, as follows: Q = {(y, z, w) ∈ D : y = 0}, and for a,
b such that (0, a, b) ∈ Q

y(t, a, b)|t=0 = 0, z(t, a, b)|t=0 = a, w(t, a, b)|t=0 = b,

x(t, a, b)|t=0 =
√

1− a2 − b2, θ(t, a, b)|t=0 = ϕ(a, b)

where ϕ(a, b) is an arbitrary function. Then, from (4.12), it follows that
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θ(t, a, b) = −2
{

(1− h2) +
λ3

λ
h2

}
t + ϕ(a, b), (4.13)

and the Jacobian ∂(y,z,w)
∂(t,a,b)

∣∣
t=0

when t = 0 is given by

∂(y, z, w)
∂(t, a, b)

∣∣∣∣
t=0

=

√
λ3

λ
h
√

1− h2
(√

1− a2 − b2 sinϕ + b cos ϕ
)

+ (1− h2)a.

(4.14)

Hence we have the following proposition.

Proposition 4.6 For height h such that 0 ≤ h < 1, the O(h)-geometry is
not empty.

Proof. Let ϕ = 0. Then, by (4.14), it follows

∂(y, z, w)
∂(t, a, b)

∣∣∣∣
t=0

=

√
λ3

λ
h
√

1− h2b + (1− h2)a.

Since in this case 1 − h2 6= 0, it holds that ∂(y,z,w)
∂(t,a,b)

∣∣
t=0

6= 0 for sufficiently
small b and nozero a. Then, by the inverse mapping theorem, the variables
t, a, b can be solved as functions of the variables y, z, w for a, b as above
and sufficiently small t. This implies that the equation (4.10) has a local
solution. Hence the O(h)-geometry is non-empty. ¤

4.2.2 Geometry of O-surfaces
We next consider the geometry of O(h)-surfaces where 0 ≤ h < 1. Let

θ be a local solution of the equation (4.9) and Dθ the involutive distribution
assosiated with θ. The integral manifolds S of Dθ are O(h)-surfaces. Then
the vector fields X and Y generate their tangent spaces and the vector field
N gives a unit normal vector field on the surfaces. By the equations (2.2)
and (4.8) we can calculate the covariant derivatives ∇XX, ∇XY , ∇Y X, and
∇Y Y as follows.

∇XX = −λ3
h√

1− h2
Y, ∇Y Y = −Fθ

(
hX +

√
1− h2N

)
,

∇XY = λ3
h√

1− h2
X +

λ3

2
N, ∇Y X = FθhY +

λ3

2
N

(4.15)
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where Fθ = cos θ(E1θ) + sin θ(E2θ). Here, to calculate ∇XX, we use the
equation (4.9) which is the existence condition of theO(h)-geometry. Taking
the tangent and the normal parts of these, we have the following.

∇θ
XX = −λ3

h√
1− h2

Y, Πθ(X, X) = 0,

∇θ
Y Y = −FθhX, Πθ(Y, Y ) = −Fθ

√
1− h2N,

∇θ
XY = λ3

h√
1− h2

X, Πθ(X, Y ) = Πθ(Y, X) =
λ3

2
N,

∇θ
Y X = FθhY

(4.16)

where ∇θ and Πθ give the Riemanian connection and the second fundamen-
tal form of O(h)-surfaces S. Also, the Gauss curvature Kθ and the mean
curvature Hθ of S are given by the equations

Kθ = −h(XFθ)−
(

λ3h√
1− h2

)2

− (Fθh)2 (4.17)

Hθ = −Fθ

√
1− h2

2
. (4.18)

Hence, by (2.4), (4.16) and (4.17), we have the following.

Proposition 4.7 Let h 6= 1. Then, for a plane P ∈ O(h) the sectional
curvature K(P ) of (G, g) is given by {λ2

3 − 4λ3(λ3 − λ)h2}/4. Also, any
O(h)-surface has no geodesic point and any O(0)-surface is moreover flat.

4.2.3 Constant Mean Curvature surface equations
Next we consider whether in the O(h)-geometry there exists an O(h)-

surface of constant mean curvature, or not. By (4.18) the condition is given
by the following equation

Fθ = cos θ(E1θ) + sin θ(E2θ) = −k/2 (4.19)

where k is constant and Hθ is given by k
√

1− h2/4. This equation is also
rewritten in terms of the local coordinates y, z, w and the local function x

as follows.
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(x cos θ − w sin θ)
(

∂θ

∂y

)
+ (w cos θ + x sin θ)

(
∂θ

∂z

)

+ (−z cos θ + y sin θ)
(

∂θ

∂w

)
+

k√
λλ3

= 0. (4.20)

In this paper we call these (4.19) or (4.20) the CMC surface equations, in
particular, the minimal surface equations when k = 0.

To analyse the CMC surface equation we first solve the system (4.11)
of the characteristic ODE’s associated with the existence PDE of O(h)-
surfaces. The system (4.11) is completed by adding to it an ODE with
respect to x which is obtained by differentiating the local function x =√

1− y2 − z2 − w2 as follows:

dx

dt
= − 1

x

(
y
dy

dt
+ z

dz

dt
+ w

dw

dt

)

=

√
λ3

λ
h
√

1− h2(−y sin θ + z cos θ)− (1− h2)w.

The completed system is now represented by the following form




dx
dt

dy
dt

dz
dt

dw
dt




=




0 −µ sin θ µ cos θ −ν

µ sin θ 0 ν µ cos θ

−µ cos θ −ν 0 µ sin θ

ν −µ cos θ −µ sin θ 0







x

y

z

w


 (4.21)

where θ = θ(t) = −2((1− h2) + λ3
λ h2)t + ϕ(a, b) and

µ =

√
λ3

λ
h
√

1− h2 > 0, ν = 1− h2 > 0. (4.22)

We write the system (4.21) as dX/dt = A(t)X. Since the system is linear
and A(t) is a skew symmetric matrix with a finite period, we can transform
it to a linear system with constant coefficients and solve it concretely. We
practice this process. Take an orthogonal matrix O(t) as follows:
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O(t) =




−ν
` cos θ sin θ µ

` cos θ 0
µ
` 0 ν

` 0

0 0 0 1
ν
` sin θ cos θ −µ

` sin θ 0




where ` =
√

µ2 + ν2. Then it follows

tO(t)A(t)O(t) = `




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 and

tO(t)
d

dt
O(t) = 2`




0 1 0 0

−1 0 µ
ν 0

0 −µ
ν 0 0

0 0 0 0




.

Put the right hands of these into A and B, respectively, and change X(t)
into Y(t) by the equation X(t) = O(t)Y(t). Then it follows

dX
dt

=
(

d

dt
O(t)

)
Y+O(t)

dY
dt

and A(t)X = O(t)A tO(t)O(t)Y = O(t)AY,

and since dX/dt = A(t)X, it follows

dY
dt

= (A−B)Y = `




0 −1 0 0

1 0 − 2µ
ν 0

0 2µ
ν 0 1

0 0 −1 0



Y.

We next put A − B = C and solve the linear system dY/dt = CY with
constant coefficients. Set

α =
µ + `

ν
> 0 and β =

−µ + `

ν
> 0 (4.23)
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where αβ = 1 and α ≥ β and take an orthogonal matrix O as follows:

O =




1√
1+α2 0 1√

1+β2
0

0 − α√
1+α2 0 − β√

1+β2

− α√
1+α2 0 β√

1+β2
0

0 − 1√
1+α2 0 1√

1+β2




.

Then it follows

tOCO = `




0 α 0 0
−α 0 0 0
0 0 0 β

0 0 −β 0


 .

Put the right hand of this into D and change Y(t) into Z(t) by the relation
Y(t) = OZ(t). Then it follows

dY
dt

= O
dZ
dt

and CY = ODZ,

and since dY/dt = CY, it follows

dZ
dt

= DZ = `




0 α 0 0
−α 0 0 0
0 0 0 β

0 0 −β 0


Z.

Set

S(t) =




cos(`αt) sin(`αt) 0 0

− sin(`αt) cos(`αt) 0 0

0 0 cos(`βt) sin(`βt)

0 0 − sin(`βt) cos(`βt)




.

Then it follows Z(t) = S(t)Z(0), and since X(t) = O(t)OZ(t), it follows
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X(t) = O(t)OS(t)tOtO(0)X(0)

where X(0) = t(
√

1− a2 − b2, 0, a, b). Note that we can rewrite θ(t) by using
α, β as follows:

θ(t) = −`(α + β)t + ϕ(a, b). (4.24)

Then, by explicit calculations, we have the following solution X(t) =
t(x(t), y(t), z(t), w(t)):

x(t) =
{

α2

1 + α2
cos(`βt) +

β2

1 + β2
cos(`αt)

}√
1− a2 − b2

+
{
− α

1 + α2
sin(`βt− ϕ) +

β

1 + β2
sin(`αt− ϕ)

}
a

+
{
− α2

1 + α2
sin(`βt)− β2

1 + β2
sin(`αt)

}
b,

y(t) =
{

α

1 + α2
cos(`αt− ϕ)− β

1 + β2
cos(`βt− ϕ)

}√
1− a2 − b2

+
{

1
1 + α2

sin(`αt) +
1

1 + β2
sin(`βt)

}
a

+
{

α

1 + α2
sin(`αt− ϕ)− β

1 + β2
sin(`βt− ϕ)

}
b,

z(t) =
{
− α

1 + α2
sin(`αt− ϕ) +

β

1 + β2
sin(`βt− ϕ)

}√
1− a2 − b2

+
{

1
1 + α2

cos(`αt) +
1

1 + β2
cos(`βt)

}
a

+
{

α

1 + α2
cos(`αt− ϕ)− β

1 + β2
cos(`βt− ϕ)

}
b,

w(t) =
{

α2

1 + α2
sin(`βt) +

β2

1 + β2
sin(`αt)

}√
1− a2 − b2

+
{

α

1 + α2
cos(`βt− ϕ)− β

1 + β2
cos(`αt− ϕ)

}
a

+
{

α2

1 + α2
cos(`βt) +

β2

1 + β2
cos(`αt)

}
b. (4.25)
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Moreover we can culculate the derivatives of coordinate functions y, z, w

with respect to the variables t, a, b. We need these derivatives to represent
the CMC surface equation (4.20) in terms of the coordinates t, a, b. They
are given in the following.

yt = −`ρ
√

1− a2 − b2{α sin(`αt− ϕ)− β sin(`βt− ϕ)}
+ `a{ηα cos(`αt) + ξβ cos(`βt)}
+ `ρb{α cos(`αt− ϕ)− β cos(`βt− ϕ)},

zt = −`ρ
√

1− a2 − b2{α cos(`αt− ϕ)− β cos(`βt− ϕ)}
− `a{ηα sin(`αt) + ξβ sin(`βt)}
− `ρb{α sin(`αt− ϕ)− β sin(`βt− ϕ)},

wt = `
√

1− a2 − b2{ηα cos(`αt) + ξβ cos(`βt)}
+ `ρa{−α sin(`αt− ϕ) + β sin(`βt− ϕ)}
− `b{ηα sin(`αt) + ξβ sin(`βt)},

ya = ϕaρ
√

1− a2 − b2{sin(`αt− ϕ)− sin(`βt− ϕ)}
+ ρ{sin(`αt) + sin(`βt)}

−
(

ρa√
1− a2 − b2

+ ϕaρb

)
{cos(`αt− ϕ)− cos(`βt− ϕ)},

za = ϕaρ
√

1− a2 − b2{cos(`αt− ϕ)− cos(`βt− ϕ)}
+ {η cos(`αt) + ξ cos(`βt)}

+
(

ρa√
1− a2 − b2

+ ϕaρb

)
{sin(`αt− ϕ)− sin(`βt− ϕ)},

wa = − a√
1− a2 − b2

{η sin(`αt) + ξ sin(`βt)}

+ ϕaρa{− sin(`αt− ϕ) + sin(`βt− ϕ)}
+ ρ{− cos(`αt− ϕ) + cos(`βt− ϕ)},

yb =
(
ϕbρ

√
1− a2 − b2 + ρ

){sin(`αt− ϕ)− sin(`βt− ϕ)}

−
(

ρb√
1− a2 − b2

+ ϕbρb

)
{cos(`αt− ϕ)− cos(`βt− ϕ)},
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zb =
(
ϕbρ

√
1− a2 − b2 + ρ

){cos(`αt− ϕ)− cos(`βt− ϕ)}

+
(

ρb√
1− a2 − b2

+ ϕbρb

)
{sin(`αt− ϕ)− sin(`βt− ϕ)},

wb = − b√
1− a2 − b2

{η sin(`αt) + ξ sin(`βt)}

+ ϕbρa{− sin(`αt− ϕ) + sin(`βt− ϕ)}+ {η cos(`αt) + ξ cos(`βt)}
(4.26)

where

ρ =
α

1 + α2
=

β

1 + β2
> 0,

ξ =
α2

1 + α2
=

1
1 + β2

> 0, η =
β2

1 + β2
=

1
1 + α2

> 0.

(4.27)

These constants ρ, ξ and η satisfy the following relations.

ξ + η = 1, ρα = ξ, ρβ = η, ηα = ξβ = ρ, ηξ = ρ2. (4.28)

We now rewrite the CMC surface equation (4.20) in terms of coordinates
t, a and b. Since ∂θ/∂t = −`(α + β), ∂θ/∂a = ϕa and ∂θ/∂b = ϕb, we have
the following CMC surface equation:

(x cos θ − w sin θ)
(
− `(α + β)

∂(z, w)
∂(a, b)

+ ϕa
∂(z, w)
∂(b, t)

+ ϕb
∂(z, w)
∂(t, a)

)

+ (w cos θ + x sin θ)
(
− `(α + β)

∂(w, y)
∂(a, b)

+ ϕa
∂(w, y)
∂(b, t)

+ ϕb
∂(w, y)
∂(t, a)

)

+ (−z cos θ + y sin θ)
(
− `(α + β)

∂(y, z)
∂(a, b)

+ ϕa
∂(y, z)
∂(b, t)

+ ϕb
∂(y, z)
∂(t, a)

)

+
k√
λλ3

(
yt

∂(z, w)
∂(a, b)

+ zt
∂(w, y)
∂(a, b)

+ wt
∂(y, z)
∂(a, b)

)
= 0. (4.29)

Here it should be assumed that ∂(y,z,w)
∂(t,a,b) 6= 0. But, by (4.14), this assumption

is possible if we take a suitable domain in the (t, a, b)-space.
Now we consider the existence problem of O(h)-surfaces of constant
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mean curvature. To do this we explicitly calculate the factors (x cos θ −
w sin θ), (w cos θ + x sin θ), (−z cos θ + y sin θ) and the Jacobians such as
∂(z,w)
∂(a,b) , ∂(z,w)

∂(b,t) , ∂(z,w)
∂(t,a) and so on. By (4.24) and (4.25) three factors in the

above are calculated as follows:

x cos θ − w sin θ = ξ
√

1− a2 sin(`αt− ϕ + τ) + aρ sin(`αt)

+ η
√

1− a2 sin(`βt− ϕ + τ)− aρ sin(`βt),

w cos θ + x sin θ = ξ
√

1− a2 cos(`αt− ϕ + τ) + aρ cos(`αt)

+ η
√

1− a2 cos(`βt− ϕ + τ)− aρ cos(`βt),

−z cos θ + y sin θ = ρ
√

1− a2 cos(`αt− τ)− aξ cos(`αt− ϕ)

− ρ
√

1− a2 cos(`βt− τ)− aη cos(`βt− ϕ),

(4.30)

where τ is defined by

sin τ =
√

1− a2 − b2

√
1− a2

and cos τ =
b√

1− a2
. (4.31)

Also, by using (4.26) we can explicitly caluculate the terms which contain
Jacobians, yt, zt and wt. After these explicit calculations, by using the
additive laws of Cosine and Sine functions, we rearrange the left hand of the
equation (4.29) in the following form

∑

ω∈Ω

∑

i

{
fω,i sin(`ωt + rω,i) + gω,i cos(`ωt + sω,i)

}
= 0 (4.32)

where Ω = {3α, 3β, 2α ± β, 2β ± α, α, β}, and fω,i, gω,i, rω,i, sω,i are some
functions dependent only on a, b and ϕ. We here note the following (i), (ii),
(iii): (i) If α 6= β, the elements in Ω are all distinct since α > β and α, β > 0,
and if α = β, it holds Ω = {3α, α}. The first case occurs when 0 < h < 1
and the second case occurs when h = 0. (ii) Moreover, if the equation (4.32)
holds on a small open interval of variable t, it also holds for all real numbers
t since the Cosine and Sine functions are analytic. (iii) Also, by the property
about the period of the Cosine and Sine functions, it follows that for each
distinct period ω, it holds that

∑
i{fω,i sin(`ωt+rω,i)+gω,i cos(`ωt+sω,i)} =

0.
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We now divide the case into the case that 0 < h < 1 and the case that
h = 0, and first consider the case that 0 < h < 1. In this case we take notice
of the periods 3`α and 3`β. These periods are different.

Let ω = 3α and extract all the terms with period 3`α in the equation
(4.29). Then, from the term

−`(α + β)
{

(x cos θ − w sin θ)
∂(z, w)
∂(a, b)

+ (w cos θ + x sin θ)
∂(w, y)
∂(a, b)

+ (−z cos θ + y sin θ)
∂(y, z)
∂(a, b)

}
,

we can extract the following ones

− (1/4)`(α + β)(ρ3 − ρ2ξ)a
√

1− a2ϕa cos(3`αt− 2ϕ + τ),

− (1/4)`(α + β)(ρ2η − ρ3)
(1− a2)√
1− a2 − b2

cos(3`αt− ϕ),

− (1/4)`(α + β)(ρ2η − ρ3)a2ϕa cos(3`αt− ϕ),

− (1/4)`(α + β)(ρη2 − ρ2η)
a
√

1− a2

√
1− a2 − b2

cos(3`αt− τ),

− (1/4)`(α + β)(ρ2η − ρ3)
(1− a2)√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
cos(3`αt− ϕ),

− (1/4)`(α + β)(ρ2ξ − ρ3)
a
√

1− a2

√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
cos(3`αt− 2ϕ + τ),

and from the term

ϕb

{
(x cos θ − w sin θ)

∂(z, w)
∂(t, a)

+ (w cos θ + x sin θ)
∂(w, y)
∂(t, a)

+ (−z cos θ + y sin θ)
∂(y, z)
∂(t, a)

}
,
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the following ones

(1/4)`ϕb(2ρ2ξ − 2ρ3)a2 cos(3`αt− ϕ),

(1/4)`ϕb(ηρ2 − ρ3 − ξρ2 + ρξ2)a
√

1− a2 cos(3`αt− τ),

(1/4)`ϕb(−ρξ2 + ρ3 − ρ2ξ + ξ3)(1− a2) cos(3`αt− ϕ),

(1/4)`ϕb(2ρξ2)a
√

1− a2 cos(3`αt− 2ϕ + τ),

and from the term

k√
λλ3

{
yt

∂(z, w)
∂(a, b)

+ zt
∂(w, y)
∂(a, b)

+ wt
∂(y, z)
∂(a, b)

}
,

the following ones

(1/4)
(
k/

√
λλ3

)
`(−ρ3 − ρ2ξ)a

√
1− a2ϕa sin(3`αt− 2ϕ + τ),

(1/4)
(
k/

√
λλ3

)
`(−ρ2η + ρ3)

(1− a2)√
1− a2 − b2

sin(3`αt− ϕ),

(1/4)
(
k/

√
λλ3

)
`(ρξ2 − ρ2ξ)

(
ϕb

√
1− a2 − b2 + 1

)
sin(3`αt− ϕ),

(1/4)
(
k/

√
λλ3

)
`(−ρ2η + ρ3)a2ϕa sin(3`αt− ϕ),

(1/4)
(
k/

√
λλ3

)
`(−ρη2 + ρ2η)

a
√

1− a2

√
1− a2 − b2

sin(3`αt− τ),

(1/4)
(
k/

√
λλ3

)
`(ρ2ξ − ρ3)

a
√

1− a2

√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
sin(3`αt− 2ϕ + τ).

Also, in the term

ϕa

{
(x cos θ − w sin θ)

∂(z, w)
∂(b, t)

+ (w cos θ + x sin θ)
∂(w, y)
∂(b, t)

+ (−z cos θ + y sin θ)
∂(y, z)
∂(b, t)

}
,
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there is no term with period 3`α. The sum of these terms with period 3`α

gives the left hand of the equality
∑

i{fω,i sin(`ωt + rω,i) + gω,i cos(`ωt +
sω,i)} = 0 when ω = 3α. Substitute the value ϕ/(3`α) for t in the obtained
explicit equality and simplify it by using (4.27) and (4.28). Then we can
obtain the following equality which does not contain the parameter t.

{
− ρ(ρ− ξ)a

√
1− a2ϕa + (ρ− η)(η − ξ)

a
√

1− a2

√
1− a2 − b2

+ 2(ρξ2 − ρ3 + ηρ2)a
√

1− a2ϕb

}
cos(ϕ− τ)

+
{

2ρ(ρ− η)
(1− a2)√
1− a2 − b2

+ ρ(ρ− η)a2ϕa + (η2 + ξ2)(ξ − ρ)ϕb

+ (2ρ2ξ − 2ρ3 + ρη2 − ηρ2 + ρξ2 − ξ3)a2ϕb

}

+
k√
λλ3

{
(ρ3 + ρ2ξ)a

√
1− a2ϕa + (ρ3 − ρ2ξ)a

√
1− a2ϕb

+ (ρ3 − ρη2)
a
√

1− a2

√
1− a2 − b2

}
sin(ϕ− τ) = 0. (4.33)

Next, after differentiating the obtained explicit equality when ω = 3α with
respect to the parameter t, substitute the value ϕ/(3`α) for t. Then we can
also obtain the following equality.

{
ρ(ρ− ξ)a

√
1− a2ϕa − 2ρ2ξa

√
1− a2ϕb + (ρ− η)

a
√

1− a2

√
1− a2 − b2

}
sin(ϕ− τ)

− k√
λλ3

ρ

{
− ρ(ρ + ξ)a

√
1− a2ϕa + ξ(ρ− η)a

√
1− a2ϕb

+ (ρ− η)
a
√

1− a2

√
1− a2 − b2

}
cos(ϕ− τ)

− k√
λλ3

ρ

{
ρ(ρ− η)a2ϕa + ξ(ξ − ρ)

√
1− a2 − b2ϕb

+ ρ(ρ− η)
(1− a2)√
1− a2 − b2

+ ξ(ξ − ρ)
}

= 0. (4.34)
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Next let ω = 3β. Similarly to the case ω = 3α, we extract the following
ones with period 3`β in the equation (4.29): From the terms which contain
the factor `(α + β),

− (1/4)`(α + β)(−ρ3 + ηρ2)a
√

1− a2ϕa cos(3`βt− 2ϕ + τ),

− (1/4)`(α + β)(ρ2ξ − ρ3)
(1− a2)√
1− a2 − b2

cos(3`βt− ϕ),

− (1/4)`(α + β)(ρ2ξ − ρ3)a2ϕa cos(3`βt− ϕ),

− (1/4)`(α + β)(ρ2ξ − ρ3)
(1− a2)√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
cos(3`βt− ϕ),

− (1/4)`(α + β)(−ρ2η + ρ3)
a
√

1− a2

√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
cos(3`βt− 2ϕ + τ),

and from the terms which contain the factor ϕb,

(1/4)`ϕb(−ρη2 + ρ3 − ρ2η + η3)(1− a2) cos(3`βt− ϕ),

(1/4)`ϕb(2ρ2η − 2ρ3)a2 cos(3`βt− ϕ),

(1/4)`ϕb(−2ρη2)a
√

1− a2 cos(3`βt− 2ϕ + τ),

(1/4)`ϕb(ρ3 − ρη2)a
√

1− a2 cos(3`βt− τ),

and from the terms which contain the factor k/
√

λλ3,

(1/4)
(
k/

√
λλ3

)
`(−ρ3 + ρ2η)aϕa sin(3`βt− 2ϕ + τ),

(1/4)
(
k/

√
λλ3

)
`(ρ2ξ − ρ3)

(1− a2)√
1− a2 − b2

sin(3`βt− ϕ),

(1/4)
(
k/

√
λλ3

)
`(ρ2ξ − ρ3)a2ϕa sin(3`βt− ϕ),
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(1/4)
(
k/

√
λλ3

)
`(−ρη2 + ρ2η)

(1− a2)√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
sin(3`βt− ϕ),

(1/4)
(
k/

√
λλ3

)
`(ρ2η − ρ3)

a
√

1− a2

√
1− a2 − b2

× (
ϕb

√
1− a2 − b2 + 1

)
sin(3`βt− 2ϕ + τ).

Also, in the terms which contain the factor ϕa, there is no term with period
3`β. The sum of these terms with period 3`β gives the left hand of the
equality

∑
i{fω,i sin(`ωt+rω,i)+gω,i cos(`ωt+sω,i)} = 0 when ω = 3β. After

differentiating the obtained explicit equality with respect to the parameter
t, substitute the value ϕ/(3`β) for t and simplify it by using (4.27) and
(4.28). Then we can obtain the following equality:

{
(−ρ2 + ηρ)a

√
1− a2ϕa + (ρη2 + ρ3)a

√
1− a2ϕb

+ (−ρη + ρ2)
a
√

1− a2

√
1− a2 − b2

(
ϕb

√
1− a2 − b2 + 1

)}
sin(ϕ− τ)

− k√
λλ3

{
(−ρ3 + ρ2η)aϕa

+ (ρ2η − ρ3)
a
√

1− a2

√
1− a2 − b2

(
ϕb

√
1− a2 − b2 + 1

)}
cos(ϕ− τ)

− k√
λλ3

{
(ρ2ξ − ρ3)

(1− a2)√
1− a2 − b2

+ (ρ2ξ − ρ3)a2ϕa

+ (−ρη2 + ρ2η)
(1− a2)√
1− a2 − b2

(
ϕb

√
1− a2 − b2 + 1

)}
= 0.

(4.35)

Under the above preparation, we have the following two propositions for the
case that 0 < h < 1.

Proposition 4.8 Let 0 < h < 1. Then there exists no minimal O(h)-
surface.
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Proof. We first note that if there exists a minimal O(h)-surface, the CMC
surface equation (4.29) when k = 0 must have a local solution. Because we
can put the minimal surface in a desired position in the ambient space G

by the transitivity of Io(G, g)-action on G. Hence, from (4.34) and (4.35),
they hold

{
ρ(ρ− ξ)ϕa − 2ρ2ξϕb + (ρ− η)

1√
1− a2 − b2

}
sin(ϕ− τ) = 0, (4.36)

{
(−ρ2 + ηρ)ϕa + (ρ3 + ρ2 + ρη2 − ρη)ϕb

+ (−ρη + ρ2)
1√

1− a2 − b2

}
sin(ϕ− τ) = 0. (4.37)

We here consider the following system of equations and we prove that this
system has no local solution.

ρ(ρ− ξ)ϕa − 2ρ2ξϕb + (ρ− η)
1√

1− a2 − b2
= 0,

(−ρ + η)ϕa + (ρ2 + ρ + η2 − η)ϕb + (−η + ρ)
1√

1− a2 − b2
= 0.

(4.38)

We regard this system as a linear system with variables ϕa and ϕb. Then
the (2× 3) matrix of coefficients has rank two. In fact, it follows by (4.28)
that

ρ(ρ− ξ)× (−η + ρ)− (ρ− η)× (−ρ + η)

= (ρ− η)(ρ2 − ρξ + ρ− η) = (ρ− η)(ξη + ρ(1− ξ)− η)

= (ρ− η)(ξη + ρη − η) = (ρ− η)η(ξ + ρ− 1) = η(ρ− η)2 6= 0.

Because, if ρ = η, by (4.27) it follows α = β = 1. This is not the case. Now,
if the system (4.38) has a solution, ϕa and ϕb must have the following form:

ϕa =
c√

1− a2 − b2
and ϕb =

d√
1− a2 − b2

for some constants c and d. The integrability condition of ϕ implies that
c = d = 0, thus, ϕa = ϕb = 0. This contradicts (4.38). Hence (4.38) has
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no solution. So, by (4.36) or (4.37), it follows that sin(ϕ − τ) = 0, thus,
ϕ = τ + c for some constant c. In particular, it follows by (4.31) that

ϕa = − ab

(1− a2)
√

1− a2 − b2
, ϕb = − 1√

1− a2 − b2
.

Substitute these for ϕa and ϕb in the equation (4.33) when k = 0. Then
we have an identical equality with respect to variables a and b. Noting
that ρ 6= ξ and observing the order of the variables a and b in the obtained
equality, we can easily induce a contradiction. Hence our statement has
been proved. The fact that ρ 6= ξ follows by (4.27), since α 6= β. ¤

Proposition 4.9 Let 0 < h < 1. Then there exists no O(h)-surface of
nonzero constant mean curvature.

Proof. If there exists an O(h)-surface of nonzero constant mean curvature,
the equations (4.34) and (4.35) when k 6= 0 have a local solution. Since we
can put the O(h)-surface in a desired position of G, we may assume that
a = 0. Substitute 0 for a in the equations (4.34) and (4.35). Then, since
k 6= 0, the equations are simplified as follows:

ξ(ξ − ρ)
√

1− b2ϕb|a=0 + ρ(ρ− η)
1√

1− b2
+ ξ(ξ − ρ) = 0, (4.39)

(ρ2ξ − ρ3 − ρη2 + ρ2η)
1√

1− b2
+ (−ρη2 + ρ2η)ϕb|a=0 = 0. (4.40)

Since in this case ρ 6= ξ, η, it follows by (4.39) that

ϕb|a=0 = −ρ(ρ− η)
ξ(ξ − ρ)

1
(1− b2)

− 1√
1− b2

(4.41)

where ρ(ρ − η)/{ξ(ξ − ρ)} 6= 0. Also, the coefficient of 1/
√

1− b2 in (4.40)
is simplified by (4.28) as follows:

ρ2ξ − ρ3 − ρη2 + ρ2η = ρ2ξ − ξηρ− ρη(η − ρ)

= ρ(ρ− η)(ξ + η) = ρ(ρ− η).

Hence, it follows by (4.40) that
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ρ(ρ− η)
1√

1− b2
+ ρ(ρ− η)ηϕb|a=0 = 0, thus, ϕb|a=0 = − 1

η
√

1− b2
.

(4.42)

These results for ϕb|a=0 are contrary to each other, since they have different
orders with respect to the variable b. Hence our statement has been proved.

¤

Next we consider the case that h = 0. In this case it holds that

µ = 0, ν = 1, α = β = 1, ρ = ξ = η = 1/2, (4.43)

and moreover

θ = −2t + ϕ (4.44)

x =
√

1− a2 − b2 cos t− b sin t, y = a sin t,

z = a cos t, w =
√

1− a2 − b2 sin t + b cos t (4.45)

yt = a cos t, zt = −a sin t, wt =
√

1− a2 − b2 cos t− b sin t

ya = sin t, za = cos t, wa = − a√
1− a2 − b2

sin t,

yb = 0, zb = 0, wb = − b√
1− a2 − b2

sin t + cos t.

Then the CMC surface equation (4.29) is explicitly given as follows:

{
− a(1− a2)√

1− a2 − b2
cos(ϕ− τ) sin(t− τ)

}
ϕa

+
{

a2
√

1− a2

√
1− a2 − b2

sin(t− ϕ + τ)− a2 cos(t− ϕ)

+
√

1− a2 sin(ϕ− τ)
(

1− b2

√
1− a2 − b2

cos t− b sin t

)}
ϕb

+
{
−

√
1− a2

√
1− a2 − b2

{
2
√

1− a2 sin(ϕ− τ) +
ka√
λλ3

}
sin(t− τ)

}
= 0

(4.46)
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We note that the left hand of the above equation is constructed by Cosine
and Sine functions with the same period 1. In the case that 0 < h < 1,
there appear terms with periods 3`α and 3`β in the equation (4.29) because
α > β, but, in this case these terms are canceled each other. Hence the
equalities (4.33), (4.34) and (4.35) when α < β are invalid in this case.

Denote by f(t, a, b) the function defined by the left hand of the equation
(4.46). Then, the equation f(t, a, b) = 0 holds for any value t if and only if
at any fixed value t0, both equations f(t0, a, b) = 0 and f ′(t0, a, b) = 0 hold,
where f ′ denotes the first differential with respect to t. Let t0 = τ . Then it
always holds that f(t0, a, b) = 0. Moreover we can see that f ′(t0, a, b) = 0 if
and only if the following equation holds:

[
− a(1− a2)√

1− a2 − b2
ϕa +

a2b√
1− a2 − b2

ϕb

]
cos(ϕ− τ)

−
[
ϕb +

2(1− a2)√
1− a2 − b2

]
sin(ϕ− τ)− a

√
1− a2

√
1− a2 − b2

k√
λλ3

= 0. (4.47)

Now we have the following propositions.

Proposition 4.10 Let h = 0. Then there exists a minimal O(0)-surface.

Proof. We consider the equation (4.47) when k = 0. Let ϕ = τ where τ is
given by the equation τ = arctan

√
1−a2−b2

b . Then, since

ϕa = − ab

(1− a2)
√

1− a2 − b2
and ϕb = − 1√

1− a2 − b2
,

the coefficient of cos(ϕ − τ) in the equation (4.47) is zero. Moreover the
second term in (4.47) is also zero since sin(ϕ− τ) = 0. Hence our ϕ satisfies
the equation (4.47) when k = 0. ¤

Proposition 4.11 Let h = 0. Then for any nonzero number H there
exists an O(0)-surface of constant mean curvature H.

Proof. We show that for any nonzero k, the equation (4.47) has a local
solution. Then k = 4H. We put

u = sin(ϕ− τ) and v = cos(ϕ− τ).
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The equation (4.47) is rewritten as follows:





u2 + v2 = 1,

−a(1−a2)ua + a2bub +
√

1−a2−b2vb + 2(a2−1)u− a
√

1−a2 k√
λλ3

= 0.

Using the equality uub+vvb = 0, we have the following quasi-linear equation
of the first order with respect to the variable u.

− a(1− a2)ua +
(

a2b−
√

1− a2 − b2
u√

1− u2

)
ub

+ 2(a2 − 1)u− a
√

1− a2
k√
λλ3

= 0. (4.48)

We show that this equation has a local solution u near the zero function.
The characteristic ODE of the PDE (4.48) is given by the following:

da

ds
= −a(1− a2),

db

ds
= a2b−

√
1− a2 − b2

u√
1− u2

,

du

ds
= −2(a2 − 1)u + a

√
1− a2

k√
λλ3

.

Take an initial line L and initia values of solutions a, b and u when s = 0,
as follows: L = {(a, b) : a2 < 1, b = 0} and for r such that (r, 0) ∈ L

a(s, r)|s=0 = r, b(s, r)|s=0 = 0, u(s, r)|s=0 = ε(r)

where ε(r) is an arbitrary nonzero function near the zero function. Then
the Jacobian ∂(a,b)

∂(s,r)

∣∣
s=0

when s = 0 is given by the equation

∂(a, b)
∂(s, r)

∣∣∣∣
s=0

=
√

1− r2
ε(r)√

1− ε(r)2
6= 0.

Hence s, r can be solved by a and b, and so u(s, r) is a function of a and b.
This u(a, b) gives a local solution of (4.48). ¤
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4.2.4 Summary
Now we can summarize our results in this section as follows.

Theorem 4.12 Let G = SU(2) and let g be a left invariant metric on G

such that 0 < λ1 = λ2 < λ3. Then the Grassmann geometry on (G, g) is
of isotropy type SO(2) and the orbit space of Io(G, g)-orbits is parametrized
by the height h where 0 ≤ h ≤ 1, which is defined for the unit sphere in the
tangent space TeG at the unity e. Denote by O(h) the orbit with height h.
Then the O(h)-geometry is nonempty if and only if h 6= 1. Moreover each
O(h)-geomery where h 6= 1 has the following properties (i) and (ii):
( i ) Let 0 < h < 1. Then any O(h)-surface has no geogesic point. Also,

there exists no O(h)-surface of constant mean curvature;
( ii ) Let h = 0. Then any O(0)-surface is a flat surface without geodesic

points. Also, for any real number H there exists an O(0)-surface of
constant mean curvature H, in particular, a minimal O(0)-surface.

Another proof1. Though this theorem is summarized as the result of our
argument done until now, we here give another proof for the latter part in
the statement (i). Assume that 0 < h < 1. If there exists an O(h)-surface
of constant mean curvature, then for a local solution θ of the equation (4.9)
the Gauss curvature Kθ and the mean curvature Hθ satisfy the equations
(4.17) and (4.18). On the other hand, by the Gauss equation together with
(2.4) and (4.16), it follows

Kθ = K(P )− {〈Π(X, Y ),Π(X, Y )〉 − 〈Π(X, X),Π(Y, Y )〉}

=

(
λ2

3 − 4λ3(λ3 − λ)h2
)

4
− λ2

3

4
= −λ3(λ3 − λ)h2

where P , X, Y mean the notations in the subsection 4.2.1. Note that the
function Fθ, which appears in (4.17) and (4.18), is constant since Hθ is
constant by the assumption. Hence, the above equation of Kθ, together
with (4.17), induces the following equality

−
(

λ3h√
1− h2

)2

− (Fθh)2 = −λ3(λ3 − λ)h2,

1This proof is suggested by the referee.
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thus, noting that h 6= 0,

F 2
θ = −λλ3 − h2

1− h2
λ2

3.

The right hand of this equality is strictly negative since λ and λ3 are positive
in this case. This is a contradiction. ¤

Remark 4.13 In this case, from (2.4), the sectional curvature K(P ) of
(G, g) satisfies the inequality λ3(λ−(3/4)λ3) ≤ K(P ) ≤ λ3

2/4. If P ∈ O(0),
the sectional curvature K(P ) attains the maximum value λ3

2/4. Then the
Grassmann geometry has a flat surface. Also, if P ∈ O(1), it attains the
minimum value λ3(λ− (3/4)λ3). Then the Grassmann geomery is empty.

Remark 4.14 If a left invariant metric g on SU(2) satisfies that λ1 = λ2 =
λ3(> 0), it is the metric of symmetric space, thus, (SU(2), g) is the standard
sphere S3. In our case, if h = 0, the existence equation (4.10) for the
Grassmann geometry and the CMC surface equation (4.47) are essentially
independent on the constant λ and λ3, by a suitable change of the constant
k. This implies that the O(0)-geometry of this case is just the same as the
geometry of surfaces of cylindrical type in the standard sphere S3. This
phenomenon occurs for the O(0)-geometry on the Heisenberg group. (See
Remark 3.9.)

Next we consider the case that 0 < λ1 < λ2 = λ3. We put λ = λ2 = λ3.
In this case the principal curvatures are given by

r(E1, E1) =
1
2
λ1

2, r(E2, E2) =
1
2
λ1(2λ− λ1),

r(E3, E3) =
1
2
λ1(2λ− λ1),

and by the same way as the case that 0 < λ1 = λ2 < λ3, the Grassmann
geometry on (G, g) is of isotropy type SO(2), where the SO(2) action on g is
the standard action on the (E2E3)-plane. Moreover, the state of geometry
is the same as the one of the case that 0 < λ1 = λ2 < λ3 where λ = λ1 =
λ2, under the following changes (i), (ii) and (iii) of notations: (i) The left
invariant vector fields E1 (or e1), E2 (or e2) and E3 (or e3) for the case that
0 < λ1 = λ2 < λ3 are respectively changed into the left invariant vector fields
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E2 (or e2), E3 (or e3) and E1 (or e1) for the case that 0 < λ1 < λ2 = λ3;
(ii) The local coordinates x, y, z and w for the case that 0 < λ1 = λ2 < λ3

are respectively changed into the local coordinates x, w, y and z for the
case that 0 < λ1 < λ2 = λ3; (iii) The constants λ3 and λ for the case that
0 < λ1 = λ2 < λ3 are respectively changed into the constants λ1 and λ for
the case that 0 < λ1 < λ2 = λ3.

5. Grassmann geometry on the special linear group SL(2,R)

Throughout this section, let G be a simply connected Lie group with
Lie algebra sl(2,R). We take a left invariant metric g on G and consider
the Grassmann geometry on (G, g), firstly the case of trivial isotropy type
and next the case of isotropy type SO(2). We again retain the notations
in Section 2 and Section 3. The process of arguments is the same as in the
previous section.

5.1. Grassmann geometry of trivial type
We first assume that the triple (λ1, λ2, λ3) satisfies λ1 < 0 < λ2 < λ3.

In this case, similarly to the case of the Subsection 4.1, we can see that the
following two cases occur: the case (i) that the principal Ricci curvatures
are all distinct; the case (ii) that λ1 + λ3 = λ2 and it holds r(E1, E1) =
r(E3, E3) = 0 and r(E2, E2) = 2λ1λ3. But, the following lemma holds for
both cases.

Lemma 5.1 For both cases (i) and (ii) the Grassmann geometry on (G, g)
is of trivial isotropy type.

Proof. We can show our statement by the same way as the proof of Lemma
4.1 for the SU(2) case. For the case (i), the statement is obvious. We
consider the case (ii). Denote by R the curvature tensor of (G, g) and by
∇R its covariant derivative. Then, by (2.2), it holds

(∇E1R)(E1, E2)E1 = −2λ1λ3
2E3, (∇E1R)(E3, E1)E1 = 2λ1λ3

2E2,

(∇E3R)(E2, E3)E1 = 2λ1
2λ3E3, (∇E3R)(E3, E1)E2 = −2λ1

2λ3E3,

(∇Ei
R)(Ej , Ek)E` = 0 for other i, j, k, `.

Take any ϕ ∈ Ko. Then we may suppose that ϕ∗e has the following form:
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ϕ∗e(E1) = cos θE1 + sin θE3, ϕ∗e(E3) = − sin θE1 + cos θE3,

ϕ∗e(E2) = E2.

for some θ. Using the above results on ∇R, we calculate (∇ϕ∗(E1)R)·
(ϕ∗(E1), ϕ∗(E2))ϕ∗(E1) and ϕ∗{(∇E1R)(E1, E2)E1} as follows:

(∇ϕ∗(E1)R)(ϕ∗(E1), ϕ∗(E2))ϕ∗(E1)

=
{
2λ1λ3

2 sin θ cos2 θ + 2λ1
2λ3 sin3 θ

}
E1

+
{− 2λ1λ3

2 cos3 θ − 2λ1
2λ3 sin2 θ cos θ

}
E3,

ϕ∗{(∇E1R)(E1, E2)E1} = 2λ1λ3
2 sin θE1 − 2λ1λ3

2 cos θE3.

Since these vectors coincide, it follows

λ3 sin θ cos2 θ + λ1 sin3 θ = λ3 sin θ, λ3 cos3 θ + λ1 sin2 θ cos θ = λ3 cos θ,

and thus

(λ1 − λ3) sin3 θ = 0, (λ1 − λ3) cos θ sin2 θ = 0.

Since λ1 − λ3 < 0, it follows sin θ = 0. This implies that ϕ = 1, since Ko is
connected. Hence Ko is trivial, which implies that the Grassmann geometry
of this case is of trivial isotropy type. ¤

Now, noting Remark 4.3 in the previous section, we have the following
proposition for the existence of Grassmann geometry.

Proposition 5.2 Let W ∈ S2(g) and let O(P (W )) be the Io(G, g)-orbit
which contains the plane P (W ) in g. Then the O(P (W ))-geometry is not
empty if and only if W satisfies that

λ1〈W,E1〉2 + λ2〈W,E2〉2 + λ3〈W,E3〉2 = 0. (5.49)

Since in this case λ1 < 0 and λ2, λ3 > 0, the equation (5.49) implies
that the set of Io(G, g)-orbits whose geometries are not empty corresponds
to an ellipse in RP 2.

We next see the geometric properties of O(P (W ))-surfaces for W ∈
S2(g) which satisfies the condition (5.49). We prepare the following lemmas.
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Lemma 5.3 If W ∈ S2(g) satisfies the condition (5.49), it holds that
〈W,E1〉 6= 0.

Proof. Put wi = 〈W,Ei〉 where i = 1, 2, 3. Then it holds that w1
2 + w2

2 +
w3

2 = 1 and λ1w1
2 + λ2w2

2 + λ3w3
2 = 0. Assume that w1 = 0. Then,

since 0 < λ2 < λ3, it follows that w2
2 = λ3

λ3−λ2
> 1. This is a contradiction.

Hence w1 6= 0. ¤

Next, for W ∈ S2(g) such that w1 6= 0, put X = w2E1 − w1E2 and
Y = w3E1 − w1E3. Then X and Y are linear independent vectors in the
plane P (W ). Let D(W ) the left invariant distribution on G generated by the
plane P (W ), and denote by ∇ the Riemannian connection on (G, g) and by
Π the normal component of ∇ with respect to the orthogonal decomposition
TG = D(W )⊕D(W )⊥.

Lemma 5.4 Then it holds that

∇XX = w1w2(µ2 − µ1)E3,

∇Y Y = w1w3(µ1 − µ3)E2,

∇XY = w1
2µ2E1 + w1w2µ1E2 + w1w3µ2E3,

∇Y X = −w1
2µ3E1 − w1w2µ3E2 − w1w3µ1E3,

(5.50)

Π(X, X) = w1w2w3(µ2 − µ1)W,

Π(Y, Y ) = w1w2w3(µ1 − µ3)W,

Π(X, Y ) = w1

(
µ1w2

2 + µ2w3
2 + µ2w1

2
)
W,

Π(Y, X) = −w1

(
µ1w3

2 + µ3w2
2 + µ3w1

2
)
W,

(5.51)

where µi (i = 1, 2, 3) are the constants defined in (2.3).

This lemma can be directly calculated by (2.2). Also, if W satisfies the
condition (5.49), it holds that Π(X, Y ) = Π(Y, X), and then Π gives the
second fundamental forms of O(P (W ))-surfaces, which are obtained as the
integral surfaces of D(W ).

We now consider the geometry of O(P (W ))-surfaces.

Proposition 5.5 Let W ∈ S2(g) satisfy the condition (5.49). Then any
O(P (W ))-surface is minimal.



Grassmann geometry on the 3-dimensional unimodular Lie groups I 469

Proof. Let S be an O(P (W ))-surface, i.e., an integral surface of D(W ).
The mean curvature H of S is given by the following general formula

2H =
〈X, X〉〈Π(Y, Y ),W 〉+ 〈Y, Y 〉〈Π(X, X),W 〉 − 2〈X, Y 〉〈Π(X, Y ),W 〉

〈X, X〉〈Y, Y 〉 − 〈X, Y 〉2 .

Then, the numerator T of the above fractional equation is calculated by
(5.51) and (5.49) as follows:

T =
(
w2

1 + w3
2
)
w1w2w3(µ2 − µ1) +

(
w2

1 + w2
2
)
w1w2w3(µ1 − µ3)

− 2w2w3

(
w1w2

2µ1 + w1w3
2µ2 + w1

3µ2

)

= −w1w2w3

{
(µ2 + µ3)w1

2 + (µ3 + µ1)w2
2 + (µ1 + µ2)w3

2
}

= −w1w2w3

(
λ1w1

2 + λ2w2
2 + λ3w3

2
)

= 0.

Hence it follows H = 0. ¤

Proposition 5.6 Let W ∈ S2(g) satisfy the condition (5.49). Then an
O(P (W ))-surface is totally geodesic if and only if it is the case λ1 +λ3 = λ2

and W satisfies that

〈W,E1〉2 =
λ3

λ3 − λ1
, 〈W,E2〉2 = 0, 〈W,E3〉2 = − λ1

λ3 − λ1
. (5.52)

Proof. Let S be an integral surface of D(W ). Then S is totally geodesic if
and only if it holds that Π(X, X) = Π(X, Y ) = Π(Y, Y ) = 0. By (5.51) and
Lemma 5.3, this condition is moreover equivalent to the following equations:

w2w3(µ2 − µ1) = 0, w2w3(µ1 − µ3) = 0,

µ1w2
2 + µ2

(
w2

1 + w2
3

)
= µ1w3

2 + µ3

(
w1

2 + w2
2
)

= 0.
(5.53)

We first show that w3 6= 0. If w3 = 0, it follows by (5.53) that µ3 = 0, thus,
λ1 + λ2− λ3 = 0. Since λ1 < 0 and λ2− λ3 < 0, this does not occur. Hence
it holds w3 6= 0. We next show that w2 = 0. If w2 6= 0, together with the
condition w3 6= 0, it follows from (5.53) that µ1 = µ2 = µ3, thus, it holds
that λ1 = λ2 = λ3. This is not the case. Hence it holds w2 = 0.
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Under these conditions, the condition (5.53) is equivalent to the condi-
tions µ2 = 0 and µ1w3

2 + µ3w1
2 = 0. Since µ2 = (λ1 − λ2 + λ3)/2, the

condition µ2 = 0 implies that λ1 + λ3 = λ2. Also, when w2 = 0, it follows
together with (5.49) that w1

2 = λ3/(λ3 − λ1) and w3
2 = −λ1/(λ3 − λ1). ¤

Proposition 5.7 Let W ∈ S2(g) satisfy the condition (5.49). Then an
O(P (W ))-surface has the positive constant Gauss curvature λ2λ3 + (λ3 −
λ1)(λ3 − λ2)〈W,E1〉2.
Proof. Let S be an integral surface of D(W ). The Gauss curvature K of
S is generally given by the following Gauss equation

K = K(P (W ))− 〈Π(X, Y ),Π(X, Y )〉 − 〈Π(X, X),Π(Y, Y )〉
〈X, X〉〈Y, Y 〉 − 〈X, Y 〉2 .

Using this formula together with (2.4) and (5.51), we can calculate K as
follows:

K =
{
(µ1µ2 + µ2µ3 + µ3µ1)− 2

(
µ2µ3w1

2 + µ3µ1w2
2 + µ1µ2w3

2
)}

− 1
w1

2

{
w1

2
(
µ1w2

2 + µ2(w1
2 + w3

2)
)2

− w1
2w2

2w3
2(µ2 − µ1)(µ1 − µ3)

}

= λ2λ3 + (λ1 − λ3)(λ2 − λ3)w1
2 > 0,

where we cancel w2
2 and w3

2 by using the equalities

w1
2 + w2

2 + w3
2 = 1 and λ1w1

2 + λ2w2
2 + λ3w3

2 = 0,

and moreover replace µi’s by λj ’s under the following relations

µ1 =
1
2
(−λ1 + λ2 + λ3), µ2 =

1
2
(λ1 − λ2 + λ3),

µ3 =
1
2
(λ1 + λ2 − λ3). ¤

Now we can summarize our results in this subsection as follows.

Theorem 5.8 Let G be the simply connected Lie group with the Lie algebra
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sl(2,R) and g a left invariant metric on G such that λ1 < 0 < λ2 < λ3.
Then the Grassmann geometry on (G, g) is of trivial isotropy type and the
orbit space of Io(G, g)-orbits is bijective to the projective plane RP 2 over
g. Moreover, for a plane P (W ) associated with W ∈ S2(g), the O(P (W ))-
geometry is nonempty if and only if W satisfies the condition

λ1〈W,E1〉2 + λ2〈W,E2〉2 + λ3〈W,E3〉2 = 0.

Also, when the O(P (W ))-geometry is not empty, any O(P (W ))-surface is a
minimal surface of constant positive Gauss curvature λ2λ3 +(λ3−λ1)(λ3−
λ2)〈W,E1〉2, and particularly it is totally geodesic if and only if the left
invariant metric g is the case λ1 + λ3 = λ2 and the plane P (W ) is either of

P
(√

λ3
λ3−λ1

E1 ±
√

−λ1
λ3−λ1

E3

)
.

Also, the maximal O(P (W ))-surfaces are homogeneous Riemannian surfaces
of (G, g) which are congruent to each other.

Remark 5.9 When an O(P (W ))-geometry is not empty, the sectional
curvature K(P (W )) of (G, g) is given by

K(P (W )) =
{

1
4
(λ1 − λ2 − λ3)2 + λ2λ3

}
− 2(λ1 − λ2)(λ1 − λ3)w2

1,

and thus it satisfies the following inequality

{
1
4
(λ1 − λ2 − λ3)2 + λ2λ3

}
− 2(λ1 − λ2)(λ1 − λ3)

≤ K(P (W )) <

{
1
4
(λ1 − λ2 − λ3)2 + λ2λ3

}
.

When it is the case λ1 + λ3 = λ2, the planes P
(√

λ3
λ3−λ1

E1 ±
√

−λ1
λ3−λ1

E3

)

does not attain the minimum of this inequality. This state is different from
the other cases of Grassmann geometry.

5.2. Grassmann geometry of isotropy type SO(2)
Next we consider the case that λ1 < 0 < λ2 = λ3 where we put λ =

λ2 = λ3. Let G be a simply connected Lie group with Lie algebra sl(2,R)
and let g be a left invariant metric on G of this case. We first consider the
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isotropy Ko in the isometry group Io(G, g) at the unity e. In this case the
principal Ricci curvatures of (G, g) are given by

r(E1, E1) =
1
2
λ1

2, r(E2, E2) = r(E3, E3) =
1
2
λ1(2λ− λ1),

where since λ 6= λ1, it holds that r(E2, E2) = r(E3, E3) 6= r(E1, E1). Then,
by the same way as Lemma 4.4 for the SU(2) case, we have the following
lemma.

Lemma 5.10 The Grassmann geometry of this type is of isotropy type
SO(2).

We here note that the SO(2)-action on g is the standard action on the
(E2E3)-plane. Also, by this lemma, the orbit space of Io(G, g)-orbits is the
quotient space SO(2)\RP 2(g). In the following, similarly to the SU(2) case,
we use the height h (0 ≤ h ≤ 1) from the (E2E3)-plane as a parametrization
of the orbit space. Then O(h) where 0 ≤ h ≤ 1 expresses the Io(G, g)-orbit
which contains the planes P (W ) for the elements W in S2(g) with height h.

5.2.1 Existence and geometry of O-surfaces
We divide the case into the case that h 6= 1 and the case that h = 1. In

next subsection 5.2.2, the first case will be moreover devided into 4 cases.
We first consider the case that h = 1. Since h = 1, it follows that

O(1) = O(P (E1)) and Ko(P (E1)) = {P (E1)}. Hence the orbitO(1) induces
a unique left invariant distribution on G. By the same way as Proposition
4.5. we have the following proposition.

Proposition 5.11 The O(1)-geometry is empty.

Next we give a local coordinate system of SL(2,R). Since in the follow-
ing subsections we consider the local geometry of O(h)-surfaces, we may re-
gard a local coordinate system of SL(2,R) as a local coordinate system of G.
Set D = {(y, z, w) ∈ R3 : −y2+z2−w2 < 1} and put x =

√
1 + y2 − z2 + w2

on D. Then the correspondence

D 3 (y, z, w) 7−→
(

x + y z + w
−z + w x− y

)
∈ SL(2,R)

gives a local coordinate system of SL(2,R), by which the point (0, 0, 0) ∈ D
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corresponds to the unit e of SL(2,R). Let ei (i = 1, 2, 3) be the elements in
g = sl(2,R) defined by putting

e1 =
λ

2

(
0 1
−1 0

)
, e2 =

√
λ|λ1|
2

(
0 1
1 0

)
, e3 =

√
λ|λ1|
2

(
1 0
0 −1

)

and Êi (i = 1, 2, 3) the vector fields of SL(2,R) defined by putting Êi(q) =
q · ei for q ∈ SL(2,R). Then Êi are left invariant and they satisfy the
following relations

[
Ê1, Ê2

]
= λÊ3,

[
Ê2, Ê3

]
= λ1Ê1,

[
Ê3, Ê1

]
= λÊ2.

In the following we identify the vector fields Êi with the elements Ei ∈ g.
Then, the following holds on D.

(E1, E2, E3) =
(

∂

∂y
,

∂

∂z
,

∂

∂w

)



−λ
2 w

√
λ|λ1|
2 z

√
λ|λ1|
2 x

λ
2 x

√
λ|λ1|
2 y −

√
λ|λ1|
2 w

λ
2 y

√
λ|λ1|
2 x −

√
λ|λ1|
2 z




. (5.54)

Now we consider the O(h)-geometry on G where h 6= 1. In this case the
orbit O(h)∩Gr2(g) is identified with the circle in S2(g) of unit vectors with
height h. For a local function θ on an open set O in G, set

X(q) = h sin(θ(q))E2(q)− h cos(θ(q))E3(q) +
√

1− h2E1(q),

Y (q) = cos(θ(q))E2(q) + sin(θ(q))E3(q), (5.55)

N(q) =
√

1− h2 sin(θ(q))E2(q)−
√

1− h2 cos(θ(q))E3(q)− hE1(q)

where q ∈ O, and moreover set Pq = R·X(q)⊕RY (q) andDθ = {Pq : q ∈ O}.
Then the set {X, Y,N} is an orthonormal frame of vector fields on O, the
planes Pq belong to O(h), and Dθ defines the distribution on O generated
by the planes Pq. By Lemma 3.1, the O(h)-geometry is non-empty if and
only if there exist an open set O in G and a function θ on it such that
Dθ is involutive. We may here suppose that O is a neighbourhood of the
unity e which is contained in the domain D, since (G, g) is a Riemannian
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homogeneous space.
By the same way as the SU(2) case, Dθ is involutive if and only if it

holds

h
√

1− h2 sin θ(E2θ)− h
√

1− h2 cos θ(E3θ)

+ (1− h2)(E1θ) + λ(1− h2) + λ1h
2 = 0. (5.56)

Rewriting this in terms of x, y, z, w by (5.54), we have the following quasi-
linear PDE of the first order with unknown function θ:

{√
|λ1|
λ

h
√

1− h2z sin θ −
√
|λ1|
λ

h
√

1− h2x cos θ − (1− h2)w
}(

∂θ

∂y

)

+
{√

|λ1|
λ

h
√

1− h2y sin θ +

√
|λ1|
λ

h
√

1− h2w cos θ + (1− h2)x
}(

∂θ

∂z

)

+
{√

|λ1|
λ

h
√

1− h2x sin θ +

√
|λ1|
λ

h
√

1− h2z cos θ + (1− h2)y
}(

∂θ

∂w

)

+ 2(1− h2) + 2
λ1

λ
h2 = 0. (5.57)

We call (5.56) or (5.57) the existence equations of Grassmann geometry.
Let us consider the existence problem of solutions for the equation

(5.57). The associated characteristic ODE’s are given in the following.

dy

dt
=

√
|λ1|
λ

h
√

1− h2z sin θ −
√
|λ1|
λ

h
√

1− h2x cos θ − (1− h2)w,

dz

dt
=

√
|λ1|
λ

h
√

1− h2y sin θ +

√
|λ1|
λ

h
√

1− h2w cos θ + (1− h2)x, (5.58)

dw

dt
=

√
|λ1|
λ

h
√

1− h2x sin θ +

√
|λ1|
λ

h
√

1− h2z cos θ + (1− h2)y,

dθ

dt
= −2(1− h2)− 2

λ1

λ
h2. (5.59)

Take an initial plane Q and initial values of solutions x, y, z, w and an initial
function of θ when t = 0, as follows: Q = {(y, z, w) ∈ D : y = 0}, and for a,
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b such that (0, a, b) ∈ Q

y(t, a, b)|t=0 = 0, z(t, a, b)|t=0 = a, w(t, a, b)|t=0 = b,

x(t, a, b)|t=0 =
√

1− a2 + b2, θ(t, a, b)|t=0 = ϕ(a, b)

where ϕ(a, b) is an arbitrary function. Then, from (5.59), it follows that

θ(t, a, b) = −2
{

(1− h2) +
λ1

λ
h2

}
t + ϕ(a, b), (5.60)

and the Jacobian ∂(y,z,w)
∂(t,a,b)

∣∣
t=0

when t = 0 is given by the equation

∂(y, z, w)
∂(t, a, b)

∣∣∣∣
t=0

=

√
|λ1|
λ

h
√

1− h2
(
a sinϕ−

√
1− a2 + b2 cos ϕ

)− (1− h2)b.

(5.61)

Hence, similarly to the SU(2) case, we have the following proposition.

Proposition 5.12 For a height h such that 0 ≤ h < 1, the O(h)-geometry
is non-empty.

We next consider the geometry of O(h)-surfaces. The state of geometry
is the same as the SU(2) case if we replace λ3, E1, E2 for the SU(2) case by
λ1, E2, E3, respectively. Let θ be a local solution of the equation (5.57) and
Dθ the involutive distribution assosiated with θ. The integral surfaces S of
Dθ are O(h)-surfaces, and their tangent spaces are generated by the vector
fields X and Y , and the vector field N gives a unit normal vector field on
the surfaces. By (2.2) and (5.55) we can calculate the covariant derivatives
∇XX, ∇XY , ∇Y X, and ∇Y Y as follows.

∇XX = −λ1
h√

1− h2
Y, ∇Y Y = −Fθ

(
hX +

√
1− h2N

)
,

∇XY = λ1
h√

1− h2
X +

λ1

2
N, ∇Y X = FθhY +

λ1

2
N

(5.62)

where Fθ = cos θ(E2θ) + sin θ(E3θ). Here, to calculate ∇XX, we use the
existence equation (5.56) for the O(h)-geometry. Taking the tangent and
the normal parts of these covariant derivatives, we have the following.
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∇θ
XX = −λ1

h√
1− h2

Y, Πθ(X, X) = 0,

∇θ
Y Y = −FθhX, Πθ(Y, Y ) = −Fθ

√
1− h2N,

∇θ
XY = λ1

h√
1− h2

X, Πθ(X, Y ) = Πθ(Y, X) =
λ1

2
N,

∇θ
Y X = FθhY

(5.63)

where ∇θ and Πθ give the Riemanian connection and the second fundamen-
tal form of O(h)-surfaces S. Also, the Gauss curvature Kθ and the mean
curvature Hθ of O(h)-surfaces S are given by the following equations:

Kθ = −h(XFθ)−
(

λ1h√
1− h2

)2

− (Fθh)2 (5.64)

Hθ = −Fθ

√
1− h2

2
. (5.65)

Hence, by (2.4), (5.63) and (5.64), we have the following proposition.

Proposition 5.13 Let h 6= 1. Then, for a plane P ∈ O(h) the sectional
curvature K(P ) of (G, g) is given by {λ1

2 − 4λ1(λ1 − λ)h2}/4. Also, any
O(h)-surface has no geodesic point and in particular any O(0)-surface is
moreover flat.

5.2.2 Existence equations of Grassmann geometry
In this subsection we divide the case that 0 ≤ h < 1 into 4 cases

according to the types of the characteristic ODE’s (5.58). To complete
the system (5.58) we differentiate the local function x =

√
1 + y2 − z2 + w2

as follows.

dx

dt
=

1
x

(
y
dy

dt
− z

dz

dt
+ w

dw

dt

)

=

√
|λ1|
λ

h
√

1− h2(−y cos θ + w sin θ)− (1− h2)z.

The completed system is now represented as follows.
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


dx
dt

dy
dt

dz
dt

dw
dt




=




0 −µ cos θ −ν µ sin θ

−µ cos θ 0 µ sin θ −ν

ν µ sin θ 0 µ cos θ

µ sin θ ν µ cos θ 0







x

y

z

w


 (5.66)

where θ = θ(t) = −2
(
(1− h2) + λ1

λ h2
)
t + ϕ(a, b) and

µ =

√
|λ1|
λ

h
√

1− h2 > 0, ν = 1− h2 > 0. (5.67)

We write the system (5.66) as dX/dt = A(t)X and moreover put A(t) =
νA1 + µA2(t) where

A1 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 and A2(t) =




0 − cos θ 0 sin θ

− cos θ 0 sin θ 0
0 sin θ 0 cos θ

sin θ 0 cos θ 0


 .

(5.68)

The matrix A1 is skew symmetric and orthogonal, the matrix A2(t) is sym-
metric and orthogonal, and they satisfy that A1A2(t) + A2(t)A1 = 0. We
note that the matrix A(t) is periodic similarly to the SU(2) case. Hence
the ODE dX/dt = A(t)X can be transformed into a linear ODE of constant
efficients by a suitable change of variables. We practice this process and
after that, solve the linear ODE of constant efficients concretely.

Take an orthogonal matrix O as follows:

O =
1√
2




1 −1 0 0
0 0 1 −1
1 1 0 0
0 0 1 1


 .

Then it follows

tOA(t)O =
(

νJ µR(t)
µR(t) νJ

)
,
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where

J =
(

0 −1
1 0

)
and R(t) =

(
sin θ cos θ
cos θ − sin θ

)
.

Changing X(t) into Y(t) by the relation X(t) = OY(t), we have the following
ODE

dY
dt

=
(

νJ µR(t)
µR(t) νJ

)
Y.

Put Y =
( Y1
Y2

)
where Yi are 2×1 matrices. Then the above ODE is composed

by the following two linear systems

dY1

dt
= νJY1 + µR(t)Y2 and

dY2

dt
= µR(t)Y1 + νJY2.

Take an orthogonal 2× 2 matrix T (t) as follows:

T (t) =
1√
2




− cos θ√
1−sin θ

− cos θ√
1+sin θ

sin θ−1√
1−sin θ

sin θ+1√
1+sin θ




where it is assumed that | sin θ | 6= 1. Then it follows that

tT (t)JT (t) =
(

0 sgn(cos θ)
−sgn(cos θ) 0

)
, tT (t)R(t)T (t) =

(
1 0
0 −1

)
,

(
d tT (t)

dt

)
T (t) =

γ

2

(
0 sgn(cos θ)

−sgn(cos θ) 0

)

where sign(cos θ) denotes the sign of cos θ and γ denotes the constant such
that θ = γt + ϕ, thus, γ = −2

{
(1 − h2) + λ1

λ h2
}
. We here note that

the assumption | sin θ | 6= 1 is no problem and we may moreover assume
that sign(cos θ) = 1, since we can select a suitable initial deta of ϕ in the
subsequent arguments of this paper. Under these preparations, transform
the variables Yi into new variables Zi where i = 1, 2 by the equations Yi =
T (t)Zi. Then it follows that
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dZ1

dt
=

{
d

dt
tT (t)

}
Y1 + tT (t)

dY1

dt

=
d

dt
{ tT (t)}T (t)Z1 + ν tT (t)JT (t)Z1 + µ tT (t)R(t)T (t)Z2

=
(

ν +
γ

2

)(
0 1
−1 0

)
Z1 + µ

(
1 0
0 −1

)
Z2,

dZ2

dt
=

{
d

dt
tT (t)

}
Y2 + tT (t)

dY2

dt

=
d

dt
{ tT (t)}T (t)Z2 + ν tT (t)JT (t)Z2 + µ tT (t)R(t)T (t)Z1

=
(

ν +
γ

2

)(
0 1
−1 0

)
Z2 + µ

(
1 0
0 −1

)
Z1.

Putting Z =
( Z1
Z2

)
and υ = ν + γ/2 = −λ1

λ h2, we obtain the following linear
system of ODE’s of constant coefficients:

dZ
dt

=




0 υ µ 0
−υ 0 0 −µ

µ 0 0 υ

0 −µ −υ 0


Z. (5.69)

The change of the variable Z into the variable X is given by the following
relation.

X = O

(
T (t) 0

0 T (t)

)
Z =

1
2




p q 0 0
0 0 p q

q −p 0 0
0 0 q −p


Z (5.70)

where p and q are the functions of variable θ which are defined when cos θ > 0
as follows:

p(θ) =
1− cos θ − sin θ√

1− sin θ
= −1− cos θ + sin θ√

1 + sin θ
= 2 sin

θ

2
,

q(θ) = −1 + cos θ − sin θ√
1− sin θ

= −1 + cos θ + sin θ√
1 + sin θ

= 2 cos
θ

2
.
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We here note that

p2 + q2 = 4,
dp

dθ
=

1
2
q,

dq

dθ
= −1

2
p.

Denote by B the 4×4 matrix in the equation (5.69). Then the characteristic
polynomial of B is given by {x2 − (µ2 − υ2)}2 where µ2 − υ2 = −λ1

λ h2
(
1−

λ−λ1
λ h2

)
. We divide the case into the following 4 cases (I) through (IV)

according to each Jordan type of the matrix B: Case (I) is the case that

h = 0, thus, µ = υ = 0; Case (II) is the case that h =
√

λ
λ−λ1

< 1, in this

case, µ2 = υ2 but µ, υ 6= 0; Case (III) is the case that 0 < h <
√

λ
λ−λ1

, in

this case, µ2 > υ2 and the eigenvalues of B are two distinct real numbers;
Case (IV) is the case that

√
λ

λ−λ1
< h < 1, in this case, µ2 < υ2 and the

eigenvalues of B are two distinct purely imaginary complex numbers. This
division will give a different state of Grassmann geometry for each case.

Proposition 5.14 For the Grassmann geometry of Case (II) an O(h)-
surface of constant mean curvature is always minimal, and for the Grass-
mann geometry of Case (IV) there exists no O(h)-surface of constant mean
curvature.

Proof. The proof is done similarly to the “another proof” for Theorem
4.12 of the SU(2) case. If there exists an O(h)-surface of constant mean
curvature for a Grassmann geometry of isotropy type SO(2) in the SL(2,R)
case, by a similar way to the SU(2) case together with (2.4), (5.63), (5.64),
and (5.65), we have the equality

F 2
θ = −λλ1 − h2

1− h2
λ2

1.

In this case note that λ > 0 and λ1 < 0. Then, from the above equality, the
non-negativity of F 2

θ induces the inequlity

h ≤
√

λ

λ− λ1

where Fθ = 0 if and only if h =
√

λ
λ−λ1

. Hence if it is the case that

h >
√

λ
λ−λ1

, we have a contradiction. Also, if it is the case that h =
√

λ
λ−λ1

,
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it follows that Fθ = 0, thus Hθ = 0 by (5.65). This implies that an O(h)-
surface of constant mean curvature is minimal. ¤

5.2.3 Grassmann geometry of Case (I) that h = 0
In this subsection we solve the linear system (5.66) of ODE’s for Case

(I), and consider the existence problem of O(0)-surfaces of constant mean
curvature. In this case, since B = 0, it follows by (5.69) that Z is constant.
Hence using the change of variables Z into variables X, we can concretely
solve (5.66). But we solve it directly since they are simple in this case. Note
that µ = 0, ν = 1 and γ = −2. Then the system (5.66) are concretely given
as follows:

dx

dt
= −z,

dy

dt
= −w,

dz

dt
= x,

dw

dt
= y (5.71)

where θ(t) = −2t + ϕ(a, b). Solving these under the initial conditions

x(0, a, b) =
√

1− a2 + b2, y(0, a, b) = 0, z(0, a, b) = a, w(0, a, b) = b,

we have the following solutions

x(t, a, b) =
√

1− a2 + b2 cos t− a sin t, y(t, a, b) = −b sin t

z(t, a, b) = a cos t +
√

1− a2 + b2 sin t, w(t, a, b) = b cos t,
(5.72)

and moreover the differntials of these are given in the following:

xt = −
√

1− a2 + b2 sin t− a cos t, xa = − a√
1− a2 + b2

cos t− sin t,

xb =
b√

1− a2 + b2
cos t,

yt = −b cos t, ya = 0, yb = − sin t,

zt = −a sin t +
√

1− a2 + b2 cos t, za = cos t− a√
1− a2 + b2

sin t,

zb =
b√

1− a2 + b2
sin t,

wt = −b sin t, wa = 0, wb = cos t,

θt = −2, θa = ϕa, θb = ϕb.
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We here consider the existence problem of O(0)-surfaces of constant mean
curvature. By (5.65) the CMC surface equation is generally given by the
following equation.

Fθ = cos θ(E2θ) + sin θ(E3θ) = −k/2 (5.73)

where k is constant and in Case (I), the mean curvature Hθ of an O(0)-
surface is given by k/4. By (5.54), this equation is rewritten in tems of the
local coordinates y, z, w and the local function x, as follows.

(z cos θ + x sin θ)
(

∂θ

∂y

)
+ (y cos θ − w sin θ)

(
∂θ

∂z

)

+ (x cos θ − z sin θ)
(

∂θ

∂w

)
+ K = 0 (5.74)

where K = k√
λ|λ1|

.

Moreover, similarly to the SU(2) case, rewriting this by using the vari-
ables t, a, b, we have the following CMC surface equation

(z cos θ + x sin θ)
(

θt
∂(z, w)
∂(a, b)

+ θa
∂(z, w)
∂(b, t)

+ θb
∂(z, w)
∂(t, a)

)

+ (y cos θ − w sin θ)
(

θt
∂(w, y)
∂(a, b)

+ θa
∂(w, y)
∂(b, t)

+ θb
∂(w, y)
∂(t, a)

)

+ (x cos θ − z sin θ)
(

θt
∂(y, z)
∂(a, b)

+ θa
∂(y, z)
∂(b, t)

+ θb
∂(y, z)
∂(t, a)

)

+ K

(
yt

∂(z, w)
∂(a, b)

+ zt
∂(w, y)
∂(a, b)

wt
∂(y, z)
∂(a, b)

)
= 0. (5.75)

We remark that the CMC surface equations for the other Cases (II), (III)
and (IV) also have the same form as this equation. In Case (I) the factors
in this equation, such as z cos θ + x sin θ, ∂(z,w)

∂(a,b) and so on, are explicitly
calculated as follows:

z cos θ + x sin θ =
√

1 + b2 cos(t− ϕ + τ),

y cos θ − w sin θ = b sin(t− ϕ),
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x cos θ − z sin θ =
√

1 + b2 sin(t− ϕ + τ),

∂(z, w)
∂(a, b)

= −
√

1 + b2

√
1− a2 + b2

cos t sin(t− τ),

∂(z, w)
∂(t, a)

= − b
√

1 + b2

√
1− a2 + b2

sin t sin(t− τ),

∂(z, w)
∂(b, t)

= − b2

√
1− a2 + b2

sin2 t +
√

1 + b2 cos t sin(t− τ),

∂(w, y)
∂(a, b)

= 0,
∂(w, y)
∂(b, t)

= −b,
∂(w, y)
∂(t, a)

= 0,

∂(y, z)
∂(a, b)

= −
√

1 + b2

√
1− a2 + b2

sin t sin(t− τ),

∂(y, z)
∂(t, a)

=
b
√

1 + b2

√
1− a2 + b2

cos t sin(t− τ),

∂(y, z)
∂(b, t)

= a sin2 t +
(

b2

√
1− a2 + b2

−
√

1− a2 + b2

)
sin t cos t

where τ is defined as the constant which satisfies that

cos τ =
a√

1 + b2
, sin τ =

√
1− a2 + b2

√
1 + b2

. (5.76)

Substituting these equations into the CMC surface equation (5.75), we ob-
tain the following equation.

[
− b2

√
1 + b2

√
1− a2 + b2

cos(t− ϕ + τ)

− b2 sin(t− ϕ) +
√

1 + b2 cos(ϕ− τ)
(

a2 − 1√
1− a2 + b2

cos t + a sin t

)]
ϕa

+
[
− b(1 + b2)√

1− a2 + b2
sin(ϕ− τ) sin(t− τ)

]
ϕb

+
[
(−2)

{
− (1 + b2)√

1− a2 + b2
cos(ϕ− τ) sin(t− τ)

}
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+ K

{
b
√

1 + b2

√
1− a2 + b2

sin(t− τ)
}]

= 0. (5.77)

We note that the left hand of the above equation is constructed by Cosine
and Sine functions with the same period 1 with respect to the variable t.
Denote by f(t, a, b) the function defined by the left hand of the equation.
Then, the equation f(t, a, b) = 0 holds for any value t if and only if at any
fixed value t0, both equations f(t0, a, b) = 0 and f ′(t0, a, b) = 0 hold where
f ′ denotes the first differential with respect to t. Let t0 = τ . Then it always
holds f(t0, a, b) = 0. Moreover we can see that f ′(t0, a, b) = 0 if and only if
the following equation holds:

[
− ab2

√
1− a2 − b2

ϕa − b(1 + b2)√
1− a2 + b2

ϕb

]
sin(ϕ− τ)

+
[
ϕa +

2(1 + b2)√
1− a2 + b2

]
cos(ϕ− τ) +

Kb
√

1 + b2

√
1− a2 + b2

= 0. (5.78)

Now we have the following propositions.

Proposition 5.15 Let h = 0. Then there exists a minimal O(0)-surface.

Proof. We consider the equation (5.78) when K = 0. Let ϕ = τ + π
2 where

τ = arctan
√

1−a2+b2

a . Then, since

ϕa = − 1√
1− a2 + b2

and ϕb =
ab

(1 + b2)
√

1− a2 + b2
,

the coefficient of sin(ϕ − τ) in the equation (5.78) is zero. Moreover the
second term of the equation is also zero since cos(ϕ− τ) = 0. Hence our ϕ

satisfies the CMC surface equation (5.75) when K = 0. ¤

Proposition 5.16 Let h = 0. Then for any nonzero number H there
exists an O(0)-surface of constant mean curvature H.

Proof. We show that for any nonzero K the equation (5.78) has a local
solution where K = 4H/

√
λ|λ1|. We put

u = sin(ϕ− τ) and v = cos(ϕ− τ).
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Then the equation (5.78) is rewritten as follows:

{
u2 + v2 = 1,

ab2va + b(1 + b2)vb +
√

1− a2 + b2ua + 2(1 + b2)v + Kb
√

1 + b2 = 0.

Using the equality uua+vva = 0, we have the following quasi-linear equation
of the first order with respect to the variable v.

(
ab2−

√
1− a2 + b2

v√
1− v2

)
va+b(1+b2)vb+2(1+b2)v−Kb

√
1 + b2 = 0.

(5.79)

We show that this equation has a local solution v near the zero function.
The characteristic ODE of the PDE (5.79) is given in the following.

da

ds
= ab2 −

√
1− a2 + b2

v√
1− v2

,

db

ds
= b(1 + b2),

dv

ds
= −2(1 + b2)v + Kb

√
1 + b2.

Take an initial line L and initia values of solutions a, b and v when s = 0,
as follows: L = {(a, b) : a = 0, b ∈ R} and for r such that (0, r) ∈ L

a(s, r)|s=0 = 0, b(s, r)|s=0 = r, v(s, r)|s=0 = ε(r)

where ε(r) is an arbitrary nonzero function near the zero function. Then
the Jacobian ∂(a,b)

∂(s,r)

∣∣
s=0

when s = 0 is given by the following equation

∂(a, b)
∂(s, r)

∣∣∣∣
s=0

=
√

1 + r2
ε(r)√

1− ε(r)2
6= 0.

Hence s, r can be solved by a and b, and so v(s, r) is a function of a and b.
This v(a, b) gives a local solution of (5.79). ¤

Remark 5.17 The proof for Proposition 5.15 and Proposition 5.16 is
essentially the same as the one for Proposition 4.10 and Proposition 4.11 of
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the SU(2) case.

5.2.4 Grassmann geometry of Case (II) that h =
√

λ
λ−λ1

In this subsection we solve the linear system (5.66) of ODE’s for Case

(II), and consider the existence problem of minimal O
(√

λ
λ−λ1

)
-surfaces.

In this case it holds that µ = υ = − λ1
λ−λ1

> 0, thus,

B = − λ1

λ− λ1




0 1 1 0
−1 0 0 −1
1 0 0 1
0 −1 −1 0


 ,

and γ = 0. Solving the equation dZ
dt = BZ by using the theory of ODE’s of

constant coefficients, we have the following general solutions:

Z(t) = t

(
c + d t, c′ + d′t,

d

µ
− c′ − d′t, − d′

µ
− c− d t

)

where c, c′, d, d′ are arbitrary real constants. Change the variable Z into the
variable X by the relation (5.70). Then it follows

X(t) =




x(t)
y(t)
z(t)
w(t)


 =

1
2




(cp + c′q) + (dp + d′q)t

−{(
c′ − d

µ

)
p +

(
c + d′

µ

)
q
}− (d′p + dq)t

(cq − c′p) + (dq − d′p)t

−{(
c′ − d

µ

)
q − (

c + d′
µ

)
p
}− (d′q − dp)t




.

We here note that θ = ϕ since γ = 0. We can then determine the functions
x(t), y(t), z(t), w(t) under the initial conditions x(0) =

√
1− a2 + b2, y(0) =

0, z(0) = a, w(0) = b as follows:

x(t) = (−a + b sinϕ)µt +
√

1− a2 + b2,

y(t) =
(−

√
1− a2 + b2 cos ϕ + a sinϕ− b

)
µt,

z(t) =
(√

1− a2 + b2 + b cos ϕ
)
µt + a, (5.80)
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w(t) =
(√

1− a2 + b2 sinϕ + a cos ϕ
)
µt + b.

Now, since θt = 0 in this case, the CMC surface equation (5.75) reduces to
the following equation

(z cos ϕ + x sinϕ)
{

ϕa
∂(z, w)
∂(b, t)

+ ϕb
∂(z, w)
∂(t, a)

}

+ (y cos ϕ− w sinϕ)
{

ϕa
∂(w, y)
∂(b, t)

+ ϕb
∂(w, y)
∂(t, a)

}

+ (x cos ϕ− z sinϕ)
{

ϕa
∂(y, z)
∂(b, t)

+ ϕb
∂(y, z)
∂(t, a)

}

+ K

(
yt

∂(z, w)
∂(a, b)

+ zt
∂(w, y)
∂(a, b)

wt
∂(y, z)
∂(a, b)

)
= 0. (5.81)

We directly have the following proposition.

Proposition 5.18 In the case h =
√

λ
λ−λ1

, there exists a minimal

O
(√

λ
λ−λ1

)
-surface, and any minimal O

(√
λ

λ−λ1

)
-surface has negative

constant Gaussian curvature λ1λ.

Proof. Let ϕ be a constant. Then ϕ satisfies the equation (5.81) when
K = 0. We here note that we can select a range of variables a, b by (5.61) so
that ∂(y,z,w)

∂(t,a,b) |t=0 6= 0. Then variables t, a, b are local functions of variables

y, z, w, thus, θ is so. Hence there exists a minimal O
(√

λ
λ−λ1

)
-surface.

Also, by the formula (5.64), we can see that the Gaussian curvature of any

O
(√

λ
λ−λ1

)
-surface of constant mean curvature is λ1λ. ¤

5.2.5 Grassmann geometry of Case (III) that 0 < h <
√

λ
λ−λ1

In this subsection we solve the linear system (5.66) of ODE’s for Case
(III), and give the explicit data of solutions x(t), y(t), z(t), w(t). The
existence problem of O(h)-surfaces of constant mean curvature will be con-
sidered in the forthcoming paper II.

In this case it holds that µ > υ and γ < 0. Solving the equation dZ
dt = BZ

by the theory of ODE’s of constant coefficients, we have the following general
solutions:
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Z(t) =





c




1
σ
υ

0
−µ

υ


 + c′




0
µ
υ

−1
−σ

υ








eσt +





d




1
−σ

υ

0
−µ

υ


 + d′




0
µ
υ

−1
σ
υ








e−σt

where σ =
√

µ2 − υ2 and c, c′, d, d′ are arbitrary real constants. Change
the variable Z into the variable X by the relation (5.70). Then it follows

X(t) =



x(t)
y(t)
z(t)
w(t)


 =

1
2




p q 0 0
0 0 p q

q −p 0 0
0 0 q −p







ceσt + de−σt

(
σ
υ c + µ

υ c′
)
eσt+,

(− σ
υ d + µ

υ d′
)
e−σt

−c′eσt − d′e−σt

(− σ
υ c′ − µ

υ c
)
eσt+,

(
σ
υ d′ − µ

υ d
)
e−σt




.

We express these as follows:

x(t) = A1(t, a, b)eσt + A2(t, a, b)e−σt,

y(t) = B1(t, a, b)eσt + B2(t, a, b)e−σt,

z(t) = C1(t, a, b)eσt + C2(t, a, b)e−σt,

w(t) = D1(t, a, b)eσt + D2(t, a, b)e−σt.

(5.82)

The functions Ai, Bi, Ci, Di are linear combinations of some Cosine and
Sine functions with respect to the variable t. After determinating the con-
stants c, c′, d, d′ under the initial conditions x(0) =

√
1− a2 + b2, y(0) = 0,

z(0) = a, w(0) = b, we have the following explicit expression of the functions
Ai, Bi, Ci, Di.

A1 =
µ

2σ


cos

„
γ

2
t− τ

«p
1− a2 + b2 + sin

„
γ

2
t− τ

«
a + sin

„
γ

2
t + ϕ

«
b

ff
,

A2 =
µ

2σ


cos

„
γ

2
t + τ

«p
1− a2 + b2 + sin

„
γ

2
t + τ

«
a− sin

„
γ

2
t + ϕ

«
b

ff
,

B1 =
µ

2σ


− cos

„
γ

2
t + ϕ

«p
1− a2 + b2 + sin

„
γ

2
t + ϕ

«
a + sin

„
γ

2
t− τ

«
b

ff
,
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B2 =
µ

2σ


cos

„
γ

2
t + ϕ

«p
1− a2 + b2 − sin

„
γ

2
t + ϕ

«
a + sin

„
γ

2
t + τ

«
b

ff
,

C1 =
µ

2σ


− sin

„
γ

2
t− τ

«p
1− a2 + b2 + cos

„
γ

2
t− τ

«
a + cos

„
γ

2
t + ϕ

«
b

ff
,

C2 =
µ

2σ


− sin

„
γ

2
t + τ

«p
1− a2 + b2 + cos

„
γ

2
t + τ

«
a− cos

„
γ

2
t + ϕ

«
b

ff
,

D1 =
µ

2σ


sin

„
γ

2
t + ϕ

«p
1− a2 + b2 + cos

„
γ

2
t + ϕ

«
a + cos

„
γ

2
t− τ

«
b

ff
,

D2 =
µ

2σ


− sin

„
γ

2
t + ϕ

«p
1− a2 + b2 − cos

„
γ

2
t + ϕ

«
a + cos

„
γ

2
t + τ

«
b

ff

(5.83)

where τ is the constant defined by the following equations

cos τ =
σ√

σ2 + υ2
=

σ

µ
, sin τ =

υ√
σ2 + υ2

=
υ

µ
.

5.2.6 Summary
Though we keep the unsolved problem of the existence of O-surfaces of

constant mean curvature for the Grassmann geometry of Case (III), we can
summarize our argument in the Subsection 5.2 as follows.

Theorem 5.19 Let G be the simply connected Lie group with the Lie
algebra sl(2,R) and g a left invariant metric on G such that λ1 < 0 < λ2 =
λ3 = λ. Then the Grassmann geometry on (G, g) is of isotropy type SO(2)
and the orbit space of Io(G, g)-orbits is parametrized by the height h where
0 ≤ h ≤ 1, which is defined for the unit sphere in the tangent space TeG at
the unity e. Denote by O(h) the orbit with height h. Then the O(h)-geometry
is nonempty if and only if h 6= 1. Moreover devide the nonempty case into
the following 4 cases: Case (I) that h = 0, Case (II) that h =

√
λ

λ−λ1
, Case

(III) that 0 < h <
√

λ
λ−λ1

and Case (IV) that
√

λ
λ−λ1

< h < 1. Then the
O(h)-geometry of each case has the following properties:

( i ) If it is Case (I), any O(0)-surface is a flat surface without geodesic
points. Also, in this case, for any number H there exists an O(0)-
surface of constant mean curvature H;
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( ii ) If it is Case (II), any O
(√

λ
λ−λ1

)
-surface has no geodesic point. Also,

if an O
(√

λ
λ−λ1

)
-surface has constant mean curvature, it is a minimal

surface with negative constant Gauss curvature λ1λ and there exists
such an O

(√
λ

λ−λ1

)
-surface;

(iii) If it is either of Cases (III) or (IV), any O(h)-surface has no geodesic
point. Also, for the Grassmann geometry of Case (IV) there exists no
O(h)-surface of constant mean curvature.

Remark 5.20 In this case, from (2.4), the sectional curvature K(P ) of
(G, g) satisfies the inequality λ1(λ− (3/4)λ1) ≤ K(P ) ≤ λ2

1/4. If P ∈ O(0),
the sectional curvature K(P ) attains the maximum value λ2

3/4. Then the
Grassmann geometry has a flat surface. Also, if P ∈ O(1), it attains the
minimum value λ3(λ− (3/4)λ3). Then the Grassmann geomery is empty.

Remark 5.21 In Case (I) that h = 0, the existence equation (5.57) for the
Grassmann geometry and the CMC surface equation (5.77) are essentially
independent on the constant λ and λ3. This implies that the O(0)-geometry
is independent on the way of taking a left invariant metic g which satisfies
λ1 < 0 < λ2 = λ3 = λ.

6. Remarks and Problems

In this section we overview the Grassmann geometry on the 3-
dimensional unimodular Lie groups, and summarize the state of some com-
mon phenomena all over the Grassmann geometry. Next we propose some
problems which are unsolved in this paper. Lastly, as we described in
Remark 3.11, we give the correction for our paper [5] on the Grassmann
geometry of the Heisenberg group H3.

6.1. Bianchi-Cartan-Vranceanu metrics
We first pay attention to the Grassmann geometry of isotropy type

SO(2) on the simply connected Lie groups G with Lie algebra h3, su(2)
and sl(2,R). Let (G, g) be such a Lie group with left invariant metric g

and (λ1, λ2, λ3) the triple corresponding to the metric g, which is defined
in Section 2. Then two of λ1, λ2 and λ3 are equal to each other and the
other is different from these. These metrics are called the Bianchi-Cartan-
Vranceanu metrics [1]. We set λi = λj 6= λk. Then the principal Ricci cur-
vatures r(Ei, Ei), r(Ej , Ej) are equal to each other and the other r(Ek, Ek)
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is different from them, and the isotropy action SO(2) rotationally acts on
the (EiEj)-plane. Consider the integral curves of the left invariant vector
field Ek. These are geodesics of (G, g) since ∇Ek

Ek = 0 by (2.2). Denote
by H the one parameter subgroup of G generated by the vector field Ek.
Then we can see that H = R if G is of Heisenberg type and H = SO(2) if G

is either of SU(2) and SL(2,R) types. We here consider the set M2 of H-
orbits in G. This set M2 has a homogeneous structure G/H, and moreover
an H-invariant metric gM induced from the left invariant metric g. Then
the orbit space M2 is a Riemannian symmetric space and it is isometric to
one of the complex line C, the complex projective line CP 1 and the complex
hyperbolic line CH1 according as G is of Heisenberg, SU(2) and SL(2,R)
types. We now have a fibration π : G → M2, which can be regarded as a
generalization of the Hopf fibration π : S3 → CP 1 over the complex projec-
tive line CP 1, and it induces a natural homogeneous contact Riemannian
structure on G whose characteristic vector field (Reeb vector field) is given
by Ek. Let us denote by η the dual 1-form of Ek. Then η is a left invariant
contact form on G, i.e., dη ∧ η 6= 0.

By definition the height h of an O(W )-surface is h = η(W ). Denote by
ϑ the angle between the plane P (W ) and the contact distribution η = 0.
Then h = cos ϑ.

A surface S of G is called a Hopf cylinder if S is the inverse image by π

of a curve in M2. In our Grassmann geometry the O(0)-surfaces with height
0 are nothing but the Hopf cylinders.

The nonexistence of O(1)-surfaces in G with 4-dimensinal isometry
group can be proved by contact geometry as follows.

The O(1)-surfaces are integral surfaces of the contact distribution η = 0.
However by the contact condition, the contact distribution is never inte-
grable.

Remark 6.1 The simply connected naturally reductive homogeneous
spaces of dimension 3 are classified by F. Tricerri and L. Vanhecke [17]
as follows:

• space forms: Euclidean 3-space R3, 3-sphere S3 and hyperbolic 3-
space H3;

• (reducible symmetric spaces) S2 × R and H2 × R,
• The following Lie groups equipped with a left invariant metric with 4-

dimensional isometry group: SU(2), the universal covering S̃L(2,R)
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of SL(2,R) and the Heisenberg group H3.

Remark 6.2 Let (M3, g) be a Riemannian 3-manifold. Then the Rie-
mannian metric g and the canonical 1-form of the orthonormal frame bun-
dle O(M) induce a Riemannian metric on the Grassmann bundle Gr2(TM).
With respect to this metric, the natural projection π : Gr2(TM) → M is
a Riemannian submersion with totally geodesic fibers. Let S ⊂ M be an
immersed surface. Then the Gauss map of S is a smooth map of S into
Gr2(TM) defined by

γ(p) := TpS ∈ Gr2(TpM).

In case M = R3, harmonicity of the Gauss map is equivalent to the con-
stancy of mean curvature of S. In [8], [13], [15], harmonicity of Gauss maps
of constant mean curvature surfaces in 3-dimensional Riemannnian homo-
geneous manifolds of non-constant curvature was investigated.

6.2. Curvatures and unsolved problems
We next summarize the relationship between the sectional curvature of

(G, g) and the behavior of Grassmann geometry. Since an orbit O of our
Grassmann geometry is an Io(G, g)-orbit, the sectional curvatures K(P ) of
(G, g) are constant for all V ∈ O. Let K(O) denote the constant and con-
sider the range of the values K(O) when the O-geometries are nonempty. As
described in Theorem 3.2, Remark 3.7, Remark 3.10, Remark 4.13, Remark
5.9 and Remark 5.20, we observe that if an O-geometry has a flat O-surface,
the sectional curvature K(O) attains the maximum value, and that if an
O-geometry has a totally geodesic O-surface, the sectional curvature K(O)
attains the minimum value, exclusively of the case of the Grassmann geome-
try on SL(2,R) of trivial isotropy type. Also, the totally geodesic surfaces of
the 3-dimensional unimodular Lie groups have been classified by K. Tsukada
[18], and the parallel surfaces of them by M. Belkhelfa–F. Dillen–J. Inoguchi
[1] and J. Inoguchi–J. Van der Veken [6], [7]. From their classifications we
can see that all the parallel surfaces are O-surfaces.

Next we propose two problems which are unsolved in this paper. As
described in the beginning of the subsections 5.2.5, the one is the existence
problem of O-surfaces of constant mean curvature for the O-geometries on
SL(2,R) of isotropy type SO(2), Case (III). For this we will give an affirma-
tive answer in the forthcoming paper II. The other is the existence problem
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of O-surfaces of constant Gaussian curvature for the following cases: the
O-geometries on SU(2) or SL(2,R) of isotropy type SO(2) and moreover
with height h such that 0 < h < 1. By (4.17), (5.64), in these cases there ex-
ists an O-surface of constant Gaussian curvature if and only if the following
equation has a local solution θ.

√
1− h2(XHθ)− (λk)2h− 4h(Hθh)2 = c (6.84)

where λk implies the one defined first in this section and c is a constant.
These problems are closely related to the following problem.

Problem Classify all homogeneous surfaces of the 3-dimensional unimod-
ular Lie groups with left invariant metrics.

6.3. Corrections for the paper [5]
Lastly we give the corrections of our paper [5]. In pages 385 through

388 of the paper [5] there are mistakes for calculation. These come from a
wrong calculation for the derivative ∂u3/∂a, in line 16, page 386. We correct
these mistakes in the following:
(1) In the equations (4.11) in page 385, for the equation “u3(t, a, b) = − 1

2

{
t+

1
(ρ2c) sin ρ2ct

} − · · · ” read the following equation “u3(t, a, b) = − 1−ρ2

2

{
t +

1
(ρ2c) sin ρ2ct

}− · · · ”.

(2) For the equation in line 16, page 386: “∂u3
∂a = −a

√
1−ρ2

2ρ {cos(ρ2ct +

ϕ(a, b)) − cos ϕ(a, b)}∂ϕ
∂a ”, read the following equation “∂u3

∂a = −a
√

1−ρ2

2ρ ·
{cos(ρ2ct+ϕ(a, b))−cos ϕ(a, b)}∂ϕ

∂a−
√

1−ρ2

2ρ {sin(ρ2ct+ϕ(a, b))−sinϕ(a, b)}”.
(3) For the Jacobian ∆ in lines 19 through 21, page 386, read the fol-
lowing Jacobian “∆ = 1−ρ2

c sin ρ2ct∂ϕ
∂a − (1−ρ2)3/2

cρ sin ρ2ct sinϕ(a, b)∂ϕ
∂b +

ρ
√

1− ρ2 cos(ρ2ct + ϕ(a, b))”.
(4) For the derivatives ∂t/∂u1, ∂t/∂u2, ∂b/∂u1, and ∂b/∂u2 in page 387
read the following derivatives:

∂t

∂u1
=

1
∆

{√
1− ρ2

ρc
(sin ∗ − sinϕ)ϕa − a

√
1− ρ2

2ρ
(cos ∗ − cos ϕ)ϕb

+
1− ρ2

2ρ2c
(sin ∗ − sinϕ)2ϕb + 1

}
,
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∂t

∂u2
=

1
∆

{
−

√
1− ρ2

ρc
(cos ∗ − cos ϕ)ϕa

− 1− ρ2

2ρ2c
(cos ∗ − cos ϕ)(sin ∗ − sinϕ)ϕb

}
,

∂b

∂u1
=

1
∆

{
a(1− ρ2)

2
ϕa sin ρ2ct +

(1− ρ2)3/2

2ρc
(sin ∗ − sinϕ)(1 + cos ρ2ct)ϕa

+
1− ρ2

2
(1 + cos ρ2ct) +

acρ

2

√
1− ρ2 cos ∗

− 1− ρ2

2
(sin2 ∗ − sin ∗ sinϕ)

}
,

∂b

∂u2
=

1
∆

{
− (1− ρ2)3/2

2ρc
(cos ∗ − cos ϕ)(1 + cos ρ2ct)ϕa

+
1− ρ2

2
(cos ∗ sin ∗ − cos ∗ sinϕ)

}
.

(5) For the equation (4.14), page 388, read the following equation

“cρ2 sin(ρ2ct + ϕ(a, b))− ρ
√

1− ρ2ϕa cos ρ2ct

+
1− ρ2

2
ϕb sinϕ(sin ∗ sinϕ + cos2 ∗+ cos ρ2ct)

= k

[
1− ρ2

c
ϕa sin ρ2ct− (1− ρ2)3/2

cρ
ϕb sin ρ2ct sinϕ

+ ρ
√

1− ρ2 cos(ρ2ct + ϕ(a, b))
]
.”

(6) For the arguments in the lines 10 through 24, page 388, read the follow-
ing arguments: “Rewrite the equation (4.14) as follows: Ar + B

√
1− r2 +

Cr
√

1− r2 + Dr2 + E = 0 where A = ρ2c cos ϕ + 1−ρ2

2 ϕb cos ϕ sin2 ϕ −
k(1−ρ2)

c ϕa + k(1−ρ2)3/2

cρ ϕb sinϕ + ρ
√

1− ρ2 sinϕ, B = −ρ
√

1− ρ2ϕa +

ρ2c sinϕ + 1−ρ2

2 ϕb sin3 ϕ + 1−ρ2

2 ϕb sinϕ − ρ
√

1− ρ2k cos ϕ, C = −(1 −
ρ2)ϕb cos ϕ sin2 ϕ, D = 1−ρ2

2 ϕb sinϕ(sin2 ϕ − cos2 ϕ), E = cos2 ϕ. Then an
asymptotic expansion as r → 0 in the equation Ar+B

√
1− r2+Cr

√
1− r2+
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Dr2 + E = 0 induces the equality E = 0. This contradicts the assumption
cos ϕ(a, b) 6= 0.”
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