Open Access
2019 Equivariant concentration in topological groups
Friedrich Martin Schneider
Geom. Topol. 23(2): 925-956 (2019). DOI: 10.2140/gt.2019.23.925
Abstract

We prove that, if G is a second-countable topological group with a compatible right-invariant metric d and ( μ n ) n is a sequence of compactly supported Borel probability measures on G converging to invariance with respect to the mass transportation distance over d and such that ( spt μ n , d spt μ n , μ n spt μ n ) n concentrates to a fully supported, compact  mm –space ( X , d X , μ X ) , then X is homeomorphic to a G –invariant subspace of the Samuel compactification of G . In particular, this confirms a conjecture by Pestov and generalizes a well-known result by Gromov and Milman on the extreme amenability of topological groups. Furthermore, we exhibit a connection between the average orbit diameter of a metrizable flow of an arbitrary amenable topological group and the limit of Gromov’s observable diameters along any net of Borel probability measures UEB–converging to invariance over the group.

References

1.

A Arhangelskii, M Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics 1, Atlantis, Paris (2008)  MR2433295 A Arhangelskii, M Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics 1, Atlantis, Paris (2008)  MR2433295

2.

J Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies 153, North-Holland, Amsterdam (1988)  MR956049 0654.54027 J Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies 153, North-Holland, Amsterdam (1988)  MR956049 0654.54027

3.

I Ben Yaacov, J Melleray, T Tsankov, Metrizable universal minimal flows of Polish groups have a comeagre orbit, Geom. Funct. Anal. 27 (2017) 67–77  MR3613453 1364.54026 10.1007/s00039-017-0398-7 I Ben Yaacov, J Melleray, T Tsankov, Metrizable universal minimal flows of Polish groups have a comeagre orbit, Geom. Funct. Anal. 27 (2017) 67–77  MR3613453 1364.54026 10.1007/s00039-017-0398-7

4.

A Bouziad, J-P Troallic, A precompactness test for topological groups in the manner of Grothendieck, Topology Proc. 31 (2007) 19–30  MR2363148 1141.43007 A Bouziad, J-P Troallic, A precompactness test for topological groups in the manner of Grothendieck, Topology Proc. 31 (2007) 19–30  MR2363148 1141.43007

5.

A Carderi, A Thom, An exotic group as limit of finite special linear groups, Ann. Inst. Fourier $($Grenoble$)$ 68 (2018) 257–273  MR3795479 10.5802/aif.3160 A Carderi, A Thom, An exotic group as limit of finite special linear groups, Ann. Inst. Fourier $($Grenoble$)$ 68 (2018) 257–273  MR3795479 10.5802/aif.3160

6.

R Ellis, Lectures on topological dynamics, W A Benjamin, New York (1969)  MR0267561 R Ellis, Lectures on topological dynamics, W A Benjamin, New York (1969)  MR0267561

7.

K Funano, Concentration of maps and group actions, Geom. Dedicata 149 (2010) 103–119  MR2737682 1228.53047 10.1007/s10711-010-9470-2 K Funano, Concentration of maps and group actions, Geom. Dedicata 149 (2010) 103–119  MR2737682 1228.53047 10.1007/s10711-010-9470-2

8.

A L Gibbs, F E Su, On choosing and bounding probability metrics, Int. Stat. Rev. 70 (2002) 419–435  1217.62014 10.1111/j.1751-5823.2002.tb00178.x A L Gibbs, F E Su, On choosing and bounding probability metrics, Int. Stat. Rev. 70 (2002) 419–435  1217.62014 10.1111/j.1751-5823.2002.tb00178.x

9.

T Giordano, V Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6 (2007) 279–315  MR2311665 1133.22001 10.1017/S1474748006000090 T Giordano, V Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6 (2007) 279–315  MR2311665 1133.22001 10.1017/S1474748006000090

10.

E Glasner, B Tsirelson, B Weiss, The automorphism group of the Gaussian measure cannot act pointwise, Israel J. Math. 148 (2005) 305–329  MR2191233 1105.37006 10.1007/BF02775441 E Glasner, B Tsirelson, B Weiss, The automorphism group of the Gaussian measure cannot act pointwise, Israel J. Math. 148 (2005) 305–329  MR2191233 1105.37006 10.1007/BF02775441

11.

E Glasner, B Weiss, Minimal actions of the group $\mathbb S(\mathbb{Z})$ of permutations of the integers, Geom. Funct. Anal. 12 (2002) 964–988  MR1937832 10.1007/PL00012651 E Glasner, B Weiss, Minimal actions of the group $\mathbb S(\mathbb{Z})$ of permutations of the integers, Geom. Funct. Anal. 12 (2002) 964–988  MR1937832 10.1007/PL00012651

12.

M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser, Boston (1999)  MR1699320 0953.53002 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser, Boston (1999)  MR1699320 0953.53002

13.

M Gromov, V D Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983) 843–854  MR708367 0522.53039 10.2307/2374298 M Gromov, V D Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983) 843–854  MR708367 0522.53039 10.2307/2374298

14.

A S Kechris, V G Pestov, S Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005) 106–189  MR2140630 10.1007/s00039-005-0503-1 A S Kechris, V G Pestov, S Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005) 106–189  MR2140630 10.1007/s00039-005-0503-1

15.

M Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs 89, Amer. Math. Soc., Providence, RI (2001)  MR1849347 0995.60002 M Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs 89, Amer. Math. Soc., Providence, RI (2001)  MR1849347 0995.60002

16.

J Melleray, L Nguyen Van Thé, T Tsankov, Polish groups with metrizable universal minimal flows, Int. Math. Res. Not. 2016 (2016) 1285–1307  MR3509926 1359.37023 10.1093/imrn/rnv171 J Melleray, L Nguyen Van Thé, T Tsankov, Polish groups with metrizable universal minimal flows, Int. Math. Res. Not. 2016 (2016) 1285–1307  MR3509926 1359.37023 10.1093/imrn/rnv171

17.

V D Milman, Diameter of a minimal invariant subset of equivariant Lipschitz actions on compact subsets of ${\mathbb R}^k$, from “Geometrical aspects of functional analysis (1985/86)” (J Lindenstrauss, V D Milman, editors), Lecture Notes in Math. 1267, Springer (1987) 13–20  MR907682 10.1007/BFb0078130 V D Milman, Diameter of a minimal invariant subset of equivariant Lipschitz actions on compact subsets of ${\mathbb R}^k$, from “Geometrical aspects of functional analysis (1985/86)” (J Lindenstrauss, V D Milman, editors), Lecture Notes in Math. 1267, Springer (1987) 13–20  MR907682 10.1007/BFb0078130

18.

J Pachl, Uniform spaces and measures, Fields Institute Monographs 30, Springer (2013)  MR2985566 J Pachl, Uniform spaces and measures, Fields Institute Monographs 30, Springer (2013)  MR2985566

19.

V G Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc. 350 (1998) 4149–4165  MR1608494 0911.54034 10.1090/S0002-9947-98-02329-0 V G Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc. 350 (1998) 4149–4165  MR1608494 0911.54034 10.1090/S0002-9947-98-02329-0

20.

V Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. 127 (2002) 317–357  MR1900705 1007.43001 10.1007/BF02784537 V Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. 127 (2002) 317–357  MR1900705 1007.43001 10.1007/BF02784537

21.

V Pestov, Dynamics of infinite-dimensional groups: the Ramsey–Dvoretzky–Milman phenomenon, University Lecture Series 40, Amer. Math. Soc., Providence, RI (2006)  MR2277969 V Pestov, Dynamics of infinite-dimensional groups: the Ramsey–Dvoretzky–Milman phenomenon, University Lecture Series 40, Amer. Math. Soc., Providence, RI (2006)  MR2277969

22.

V Pestov, The isometry group of the Urysohn space as a Le\'vy group, Topology Appl. 154 (2007) 2173–2184  MR2324929 10.1016/j.topol.2006.02.010 V Pestov, The isometry group of the Urysohn space as a Le\'vy group, Topology Appl. 154 (2007) 2173–2184  MR2324929 10.1016/j.topol.2006.02.010

23.

V Pestov, Concentration of measure and whirly actions of Polish groups, from “Probabilistic approach to geometry” (M Kotani, M Hino, T Kumagai, editors), Adv. Stud. Pure Math. 57, Math. Soc. Japan, Tokyo (2010) 383–403  MR2648270 V Pestov, Concentration of measure and whirly actions of Polish groups, from “Probabilistic approach to geometry” (M Kotani, M Hino, T Kumagai, editors), Adv. Stud. Pure Math. 57, Math. Soc. Japan, Tokyo (2010) 383–403  MR2648270

24.

V G Pestov, F M Schneider, On amenability and groups of measurable maps, J. Funct. Anal. 273 (2017) 3859–3874  MR3711882 06792302 10.1016/j.jfa.2017.09.011 V G Pestov, F M Schneider, On amenability and groups of measurable maps, J. Funct. Anal. 273 (2017) 3859–3874  MR3711882 06792302 10.1016/j.jfa.2017.09.011

25.

S T Rachev, L Rüschendorf, Mass transportation problems, II: Applications, Springer (1998)  MR1619171 S T Rachev, L Rüschendorf, Mass transportation problems, II: Applications, Springer (1998)  MR1619171

26.

F M Schneider, Equivariant dissipation in non-archimedean groups, preprint (2018) To appear in Israel J. Math.  1804.08511 F M Schneider, Equivariant dissipation in non-archimedean groups, preprint (2018) To appear in Israel J. Math.  1804.08511

27.

F M Schneider, A Thom, On Følner sets in topological groups, Compos. Math. 154 (2018) 1333–1361  MR3809992 10.1112/S0010437X1800708X F M Schneider, A Thom, On Følner sets in topological groups, Compos. Math. 154 (2018) 1333–1361  MR3809992 10.1112/S0010437X1800708X

28.

T Shioya, Metric measure geometry: Gromov's theory of convergence and concentration of metrics and measures, IRMA Lectures in Mathematics and Theoretical Physics 25, Eur. Math. Soc., Zürich (2016)  MR3445278 1335.53003 T Shioya, Metric measure geometry: Gromov's theory of convergence and concentration of metrics and measures, IRMA Lectures in Mathematics and Theoretical Physics 25, Eur. Math. Soc., Zürich (2016)  MR3445278 1335.53003

29.

S Solecki, Actions of non-compact and non-locally compact Polish groups, J. Symbolic Logic 65 (2000) 1881–1894  MR1812189 0972.03043 10.2307/2695084 S Solecki, Actions of non-compact and non-locally compact Polish groups, J. Symbolic Logic 65 (2000) 1881–1894  MR1812189 0972.03043 10.2307/2695084

30.

V Uspenskij, On universal minimal compact $G$–spaces, Topology Proc. 25 (2000) 301–308  MR1875600 V Uspenskij, On universal minimal compact $G$–spaces, Topology Proc. 25 (2000) 301–308  MR1875600

31.

V V Uspenskij, On subgroups of minimal topological groups, Topology Appl. 155 (2008) 1580–1606  MR2435151 10.1016/j.topol.2008.03.001 V V Uspenskij, On subgroups of minimal topological groups, Topology Appl. 155 (2008) 1580–1606  MR2435151 10.1016/j.topol.2008.03.001

32.

C Villani, Optimal transport: old and new, Grundl. Math. Wissen. 338, Springer (2009)  MR2459454 1156.53003 C Villani, Optimal transport: old and new, Grundl. Math. Wissen. 338, Springer (2009)  MR2459454 1156.53003

33.

J de Vries, Elements of topological dynamics, Mathematics and its Applications 257, Kluwer, Dordrecht (1993)  MR1249063 0783.54035 J de Vries, Elements of topological dynamics, Mathematics and its Applications 257, Kluwer, Dordrecht (1993)  MR1249063 0783.54035

34.

A Weil, Sur les espaces à structure uniforme et sur la topologie générale, Act. Sci. Ind. 551 (1937) 39 pages A Weil, Sur les espaces à structure uniforme et sur la topologie générale, Act. Sci. Ind. 551 (1937) 39 pages
Copyright © 2019 Mathematical Sciences Publishers
Friedrich Martin Schneider "Equivariant concentration in topological groups," Geometry & Topology 23(2), 925-956, (2019). https://doi.org/10.2140/gt.2019.23.925
Received: 18 January 2018; Accepted: 14 July 2018; Published: 2019
Vol.23 • No. 2 • 2019
MSP
Back to Top