Abstract
It is shown that for the vector space $\mathbb{R^N}$ (equipped with the product topology and the Yamasaki-Kharazishvili measure) the group of linear measure preserving isomorphisms is quite rich. Using Kharazishvili's approach, we prove that every infinite-dimensional Polish linear space admits a $\sigma$-finite non-trivial Borel measure that is translation invariant with respect to a dense linear subspace. This extends a~recent result of Gill, Pantsulaia and Zachary on the existence of such measures in Banach spaces with Schauder bases. It is shown that each $\sigma$-finite Borel measure defined on an infinite-dimensional Polish linear space, which assigns the value 1 to a fixed compact set and is translation invariant with respect to a~linear subspace fails the uniqueness property. For Banach spaces with absolutely convergent Markushevich bases, a similar problem for the usual completion of the concrete $\sigma$-finite Borel measure is solved positively. The uniqueness problem for non-$\sigma$-finite semi-finite translation invariant Borel measures on a Banach space $X$ which assign the value 1 to the standard rectangle (i.e., the rectangle generated by an absolutely convergent Markushevich basis) is solved negatively. In addition, it is constructed an example of such a measure $\mu_B^0$ on $X$, which possesses a strict uniqueness property in the class of all translation invariant measures which are defined on the domain of $\mu_B^0$ and whose values on non-degenerate rectangles coincide with their volumes.
Citation
Tepper Gill. Aleks Kirtadze. Gogi Pantsulaia. Anatolij Plichko. "Existence and uniqueness of translation invariant measures in separable Banach spaces." Funct. Approx. Comment. Math. 50 (2) 401 - 419, June 2014. https://doi.org/10.7169/facm/2014.50.2.12
Information