Abstract
We investigate the close relationship between minimal surfaces in Euclidean three-space and surfaces of constant mean curvature 1 in hyperbolic three-space. Just as in the case of minimal surfaces in Euclidean three-space, the only complete connected embedded surfaces of constant mean curvature 1 with two ends in hyperbolic space are well-understood surfaces of revolution: the catenoid cousins.
In contrast to this, we show that, unlike the case of minimal surfaces in Euclidean three-space, there do exist complete connected immersed surfaces of constant mean curvature 1 with two ends in hyperbolic space that are not surfaces of revolution: the genus-one catenoid cousins. These surfaces are of interest because they show that, although minimal surfaces in Euclidean three-space and surfaces of constant mean curvature 1 in hyperbolic three-space are intimately related, there are essential differences between these two sets of surfaces. The proof we give of existence of the genus-one catenoid cousins is a mathematically rigorous verification that the results of a computer experiment are sufficiently accurate to imply existence.
Citation
Wayne Rossman. Katsunori Sato. "Constant mean curvature surfaces with two ends in hyperbolic space." Experiment. Math. 7 (2) 101 - 119, 1998.
Information