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We investigate the close relationship between minimal sur-
faces in Euclidean three-space and surfaces of constant mean
curvature 1 in hyperbolic three-space. Just as in the case of
minimal surfaces in Euclidean three-space, the only complete
connected embedded surfaces of constant mean curvature 1
with two ends in hyperbolic space are well-understood sur-
faces of revolution: the catenoid cousins.

In contrast to this, we show that, unlike the case of minimal
surfaces in Euclidean three-space, there do exist complete con-
nected immersed surfaces of constant mean curvature 1 with
two ends in hyperbolic space that are not surfaces of revolu-
tion: the genus-one catenoid cousins. These surfaces are of
interest because they show that, although minimal surfaces in
Euclidean three-space and surfaces of constant mean curvature
1 in hyperbolic three-space are intimately related, there are
essential differences between these two sets of surfaces. The
proof we give of existence of the genus-one catenoid cousins
is a mathematically rigorous verification that the results of a
computer experiment are sufficiently accurate to imply exis-
tence.

1. INTRODUCTION

The main result presented in this paper is moti-
vated primarily by a result of Schoen [1983], that
the only complete connected minimal immersions
of finite total curvature in R® with two embed-
ded ends are catenoids. In this paper we inves-
tigate the closely related case of surfaces of con-
stant mean curvature (CMC) 1 with two ends in
hyperbolic space H?. Other motivations are the re-
sults of Kapouleas, Korevaar, Kusner, Meeks, and
Solomon. In [Korevaar et al. 1989] it was shown
that any complete properly embedded nonmini-
mal CMC surface with two ends in R? is a peri-
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odic surface of revolution (Delaunay surface). In
[Kapouleas 1990] it was shown that there exist im-
mersed complete nonminimal CMC surfaces with
two ends in R” with genus g > 2. And in [Korevaar
et al. 1992] it was shown that any complete prop-
erly embedded surface of constant mean curvature
¢ > 1 with two ends in H? is a periodic surface of
revolution (hyperbolic Delaunay surface).

Surfaces of constant mean curvature 1 in H® are
closely related to minimal surfaces in R®. There is
a natural correspondence between them, known as
Lawson’s correspondence. Let % be a simply con-
nected region of C. If z : % — R?® is a local repre-
sentation for a minimal surface in R® with first and
second fundamental forms I and II, the Gauss and
Codazzi equations and the fundamental theorem
for surfaces imply that there is a well-defined sur-
face 7 : % € C — H? of constant mean curvature
1 with first and second fundamental forms I and
II + 1. In addition, surfaces of constant mean cur-
vature 1 in H? have a Weierstrass representation
based on a pair of holomorphic functions [Bryant
1987], similar to the Weierstrass representation for
minimal surfaces in R® (see Section 2).

The following theorem holds for any surface of
constant mean curvature, not just when the curva-
ture is 1. We include a proof in Section 3 for the
sake of completeness.

Theorem 1.1 [Levitt and Rosenberg 1985]. Any com-
plete properly embedded surface of constant mean
curvature c in H? with asymptotic boundary con-
sisting of at most two points is a surface of rev-
olution. In particular, it is homeomorphic to a
punctured sphere.

In the case ¢ = 1, this theorem implies that the sur-
face must be a catenoid cousin of genus zero. This
was shown in [Umehara and Yamada 1993]; genus-
zero catenoid cousins were originally described in
[Bryant 1987]. The condition that the surface has
asymptotic boundary at most two points implies
that ¢ > 1, as shown by do Carmo, Gomes, and
Thorbergsson [do Carmo et al. 1986].

We will show that the condition “embedded” is
critical to the above theorem, by giving an im-
mersed counterexample, which we call the genus-
one catenoid cousin.

Theorem 1.2. There exists a one-parameter famaily
of complete, properly immersed surfaces of genus 1
and constant mean curvature 1 in H? with asymp-
totic boundary consisting of two points.

The genus-one catenoid cousin displays a clear dif-
ference between surfaces of constant mean curva-
ture 1 in H® and minimal surfaces in R®, since
Schoen’s result on minimal surfaces in R® holds
even for immersions.

The genus-one catenoid cousin further shows that
the set of surfaces of constant mean curvature 1 in
H? with embedded ends is in some sense larger
than the set of minimal surfaces in R® with em-
bedded ends. Loosely speaking, the set of complete
minimal surfaces with embedded ends in R? can be
mapped injectively to a set of (one-parameter fam-
ilies of) corresponding complete surfaces of con-
stant mean curvature 1 with embedded ends in
H? [Rossman et al. 1997]. The second theorem
above shows that we cannot map the set of (one-
parameter families of) complete surfaces of con-
stant mean curvature 1 with embedded ends in H?
injectively to a set of corresponding complete mini-
mal surfaces with embedded ends in R?, since there
does not exist a minimal surface in R® correspond-
ing to the genus-one catenoid cousin in H?.

In Section 4 we give a nonrigorous explanation
for why one should expect the genus-one catenoid
cousins to exist. The remainder of the paper is
then devoted to proving Theorem 1.2 rigorously.
The proof has two interesting characteristics:

1. The period problems that must be solved can
be reduced to a single period problem, using sym-
metry properties of the surface, by a fairly direct
argument. This kind of dimension reduction of the
period problem can usually be done in a geometric
and uncomplicated way for minimal surfaces is R,
but for surfaces of constant mean curvature 1 in H?
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it seems to be inherently more algebraic and less
geometrically transparent [Rossman et al. 1997].

2. We then solve the single remaining period nu-
merically, and use a mathematically rigorous anal-
ysis of the numerical method to conclude that the
numerical results are correct. This kind of “numer-
ical error analysis” has been used before, for exam-
ple in [Hass et al. 1995] and [Karcher et al. 1988],
and it is likely to be used frequently in the future,
as it is well suited for solving period problems on
surfaces for which no other method of solution can
be found. It is easy to imagine how this method
could be useful in a very wide variety of situations.

We solve the single period problem by applying
the intermediate value theorem. The idea is simi-
lar to the way in which the same theorem is used
in the conjugate Plateau construction to solve pe-
riod problems for minimal surfaces in R? [Karcher
1989; Berglund and Rossman 1995]. However, the
conjugate Plateau construction fails to help us in
the study of surfaces of constant mean curvature
1 in H?; hence we have used numerical analysis
instead. (The conjugate Plateau construction is
of use in studying minimal surfaces in H* [Polth-
ier 1991], but it does not appear to be useful for
studying surfaces of CMC 1 in H?.)

The same methods we use here could likely also
be applied to produce similar examples with two
ends and genus greater than one, without any con-
ceptual additions. However, with genus greater
than one, after reducing the period problems to
a minimal set, we would still have at least a two-
dimensional problem, and thus the computational
aspects would become much more involved. As
the genus-one example fulfills our goal of finding
a counterexample to Schoen’s result in the hyper-
bolic case (and is computationally more easily un-
derstandable), we felt it was appropriate to restrict
ourselves to genus one.

Although this paper is written from a mathe-
matical viewpoint, the arguments used here be-
came apparent to the authors only by means of
a numerical experiment. Hence, from the authors’

point of view, experimental results were essential
in obtaining the above result.

FIGURE 1. A genus-one catenoid cousin in the Poin-
caré model for H®. (Half of the surface has been
cut away.)

2. THE WEIERSTRASS REPRESENTATION

Both minimal surfaces in R? and surfaces of mean
curvature 1 in H? can be described parametrically
by a pair of meromorphic functions on a Riemann
surface, via a Weierstrass representation. First we
describe the well-known Weierstrass representation
for minimal surfaces in R®. We will incorporate
into this representation the fact that any complete
minimal surface of finite total curvature is confor-
mally equivalent to a Riemann surface ¥ with a
finite number of points {p;}i_, C ¥ removed [Os-
serman 1969]:

Lemma 2.1. Let ¥ be a Riemann surface. Let {p;};_,
be a finite set of points of X, which will repre-
sent the ends of the minimal surface defined in this
lemma. Let zy be a fized point in X\ {p;}. Let g
be a meromorphic function from L\ {p;} to the
complex plane C. Let f be a holomorphic function
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from ¥\ {p;} to C. Assume that, for any point in
X\ {p;}, [ has a zero of order 2k at some point if
and only if g has a pole of order k at that point,
and assume that f has no other zeroes on X\ {p;}.
Then

<I>(z)=Re/ i(1+g%) fdC
“ 29[ d¢

1s a conformal minimal immersion of the universal
cover £\ {p,} into R®. Furthermore, any complete
minimal surface in R® can be represented in this
way.

The map g can be geometrically interpreted as the
stereographic projection of the Gauss map. The
first and second fundamental forms and the intrin-
sic Gaussian curvature for the surface ®(z) are

ds* = (14 gg)* [ [ dz dz,
II = —2Re Q,

. lg'| )2
h=-t (Ifl(l TePE)

where ) = fg¢'dz? is the Hopf differential.

To get a surface whose total curvature fz —KdA
is finite, we must choose f and g so that ® is well
defined on ¥ \ {p;} itself. Usually this involves
adjusting some real parameters in the descriptions
of f and g and £\ {p;} so that the real part of the
above integral about any nontrivial loop in £\ {p,}
is zero.

We now describe a Weierstrass-type representa-
tion for surfaces of constant mean curvature c in
H? (—¢?). (This notation stands for a simply con-
nected complete three-dimensional space with con-
stant sectional curvature —c?; thus H* := H? (—1).)
This lemma is a composition of results found in
[Bryant 1987; Umehara and Yamada 1996; 1997].

Lemma 2.2. Let ¥, ¥\ {p;}, 20, f, and g be the same
as in the previous lemma. Choose a null holomor-
phic immersion F from the universal cover X of

Y\ {p;} to SL(2,C) so that F(z) is the identity
matriz and so that F satisfies

2
F'dF =¢ (51’ _g >fdz. (2-1)

Then the map ® : X — H?*(—c?) defined by

1

d=_FlF 1 (2-2)

c
1s a conformal immersion of constant mean cur-
vature ¢ into H? (—c?) with the Hermitian model.
Further, any surface of constant mean curvature c¢
in H? (—c?) can be represented in this way.

A description of the Hermitian model can be found
in any of [Bryant 1987; Umehara and Yamada 1992;
1993], but we also briefly describe it here. If Z*
denotes the standard Lorentzian 4-space of signa-
ture —+++, the Minkowski model for H? (—c?) is

We can identify each point (¢, z;, 25, x3) in the Min-
kowski model with a point

t+$3 $1+i$2
$1—i$2 t—$3

in the space of 2 x 2 Hermitian matrices. Thus the
Hermitian model for H? (—¢?) is

H? (—c?) = {:I:%a @' ac SL(2,<C)}.

We call g the hyperbolic Gauss map of ®. As
its name suggests, the map g(z) has a geometric
interpretation for this case as well. It is the image
of the composition of two maps. The first map is
from each point z on the surface to the point at
the sphere at infinity in the Poincaré model that is
at the opposite end of the oriented perpendicular
geodesic ray starting at z on the surface. The sec-
ond map is stereographic projection of the sphere
at infinity to the complex plane C [Bryant 1987].
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The first fundamental form and the intrinsic Gaus-
sian curvature of the surface are

2:1 72f_g, M I
ds* = (1+ GG) G’(G’ dz dz,

12 2
_K:_4< |G| )7
9" F1(1 +1G]2)?
where G is defined as the multi-valued meromor-
phic function dF,/dFy = dFy/dFy on X\ {p;},
with F' = (F};)i j=1,2. The reason G is multi-valued
is that F' itself can be multi-valued on £\{p;} (even
if @ is well defined on ¥\ {p;} itself). The function
G is called the secondary Gauss map of ® [Bryant
1987]. The second fundamental form is given by

II = —2ReQ + cds?,

where in this case the Hopf differential is @ =
—fg'dz*. (The sign change in @ is due to the
fact that we are considering the “dual” surface; see
[Umehara and Yamada 1997] for an explanation of
this.)

In Lemma 2.2, we have changed the notation
slightly from the notation used in [Bryant 1987],
because we wish to use the same symbol g both
for the map ¢ for minimal surfaces in R” and for
the hyperbolic Gauss map for surfaces of constant
mean curvature ¢ in H?(—c?). We use a separate
notation G for the secondary Gauss map used in
the hyperbolic case. We do this to emphasize that
the g in the Euclidean case is more closely related
to the hyperbolic Gauss map ¢ in the H? case than
to the geometric Gauss map G.

We now describe some simple examples:

e The horosphere is a surface of constant mean
curvature 1 in H?. It has these Weierstrass data:

E\{p;}=C,g=1, f=1
e The Enneper cousins of [Rossman et al. 1997]

(see Figure 2, right) have the Weierstrass data
Y\{pj} =C,g=2f=reR.

e The catenoid cousins [Bryant 1987; Umehara
and Yamada 1993] (see Figure 3) have Weier-
strass data X \ {p;} = C\ {0}, g = =2, f =

FIGURE 2. A minimal Enneper surface in R®, and half of an Enneper cousin in the Poincaré model for H?. The
entire Enneper cousin consists of the piece on the right and its reflection across the plane containing the planar
geodesic boundary.
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A/z* € R. These surfaces may or may not be
embedded, depending on the value of A.

We now state some known facts that, taken to-
gether, further show just how closely related sur-
faces of constant mean curvature 1 in H?® are to
minimal surfaces in R®.

1. It was shown in [Umehara and Yamada 1992]
that, if f, g, and ¥\ {p;} are fixed and c tends
to 0, the surfaces ® of constant mean curvature c
in H?(—c*) converge locally to a minimal surface
in R®. This can be intuited from the fact that
G — g as ¢ — 0 (which follows directly from equa-
tion 2-1), and hence the above first and second
fundamental forms for the surfaces @ converge to
the fundamental forms for a minimal surface as
¢ — 0 (up to a sign change in II, amounting to
a change of orientation). The resulting minimal
surface does not necessarily have the same global
topology as the surfaces of constant mean curva-
ture ¢, and it may be periodic.

2. Counsider the Poincaré model for H?(—c?) for
¢~ 0. It is a round ball in R® centered at the

origin with Euclidean radius 1/|c|, endowed with a
complete radially symmetric metric

45" da?
(1 —c? fo)2

of constant sectional curvature —c?. Contracting
this model by a factor of |¢|, we obtain a map to
the Poincaré model for H?. Under this mapping,
surfaces of constant mean curvature ¢ are mapped
to ones of curvature 1. Thus the problem of exis-
tence of surfaces of constant mean curvature c in
H? (—c?) for ¢ ~ 0 is equivalent to the problem of
existence of surfaces of constant mean curvature 1
in HB.

ds? =

[

3. It was shown in [Rossman et al. 1997] that a
minimal surface of finite total curvature in R® satis-
fying certain conditions (these conditions are fairly
general and include most known examples) can be
deformed into a surface of constant mean curvature
¢ in H3(—¢?) for ¢ = 0, so that X, f, and g are the
same, up to a slight adjustment of the real parame-
ters that are used to solve the period problems. By
the previous item, these surfaces are equivalent to

FIGURE 3. Two genus-zero catenoid cousins in the Poincaré model for H®. The surface on the left is embedded;
the one on the right is not.
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surfaces of constant mean curvature 1 in H?. Thus
we have a one-parameter family of surfaces of con-
stant mean curvature 1 in H® with parameter c.
The deformed surfaces might not have finite total
curvature, but they will have the same topological
type and the same reflectional symmetries as the
minimal surface. (See Section 4.)

Regarding item 3 above, Theorem 1.2 shows that
the converse of the [Rossman et al. 1997] result
does not hold.

3. THE EMBEDDED CASE

The proof of Theorem 1.1 uses the maximum prin-
ciple and Alexandrov reflection. Before stating the
maximum principle, we define some terms. If X,
and X, are two smooth oriented complete hyper-
surfaces of H" that are tangent at a point p and
have the same oriented normal at p, we say that
p is a point of common tangency for ¥; and .
Let the common tangent geodesic hyperplane &
through p have the same orientation as »; and 3,
at p. Then, near p, expressing 3; and X, as graphs
g1(x) and g, () over points z € & (the term graph
in this context is defined in [do Carmo and Law-
son 1983]), we say that ¥, lies above X5 near p if

g1 = 9.

Proposition 3.1 (Maximum Principle). Suppose that 33,
and X, are closed oriented hypersurfaces in H™
with the same constant mean curvature ¢ and the
same smooth boundary 0¥, = 0%,. Suppose that
Y1 and Xy have a point p of common tangency,
and that ¥, lies above ¥, near p. (The point p can
be either an interior point of both X, and X, or a
boundary point of both X, and X,.) Then ¥ = X,.

This proposition is well known, and proofs can be
found in [do Carmo and Lawson 1983; Korevaar
et al. 1992], and references therein.

In the Poincaré model for H?, which as we recall
is the open unit ball in R® with the metric ds* =
41dx]?/ (1 - |x|2)2, the totally geodesic planes are
the intersections of B® with spheres and planes in
R? that meet OB® orthogonally. We shall use the

Poincaré model and these totally geodesic planes
in the proof of Theorem 1.1.

Proof of Theorem 1.1. We consider a complete prop-
erly embedded CMC surface M in H?. First we
suppose that M has asymptotic boundary consist-
ing of exactly two points. Applying an isometry
of H? if necessary, we may assume that these two
asymptotic points are at the north and south poles
(0,0,%1).

Let @ be a horizontal unit vector in R®. For

€ (—1,1), let P, be the totally geodesic plane
containing the point ¢ and perpendicular to the
line through ¢. The plane P, separates H? into two
regions: let A; be the region containing the points
st, s € (—1,t), and let B; be the region containing
the points st, for s € (t,1). Let (M N A;)" be the
isometric reflection of M N A; across P;.

Let ty be the largest value ty such that for all ¢
less than to, Int((MNA;)') and Int(MNB,) are dis-
joint. When ¢ is close to —1 or 1, P,NM is empty, so
it follows that such a t, exists and that ¢, € (—1, 1).
It then follows (since M is properly embedded)
that there exists a finite point of common tangency
between (M N Ay )'and M N By, and that one sur-
face lies above the other in a neighborhood of this
point of common tangency. The maximum princi-
ple implies that M NB;, = (M NA;,)". (This is the
Alexandrov reflection principle.) Since M has only
two ends at the north and south poles, it must be
that t, = 0. Since ¢ was an arbitrary horizontal
vector, it follows that M is symmetric with respect
to any geodesic plane through the north and south
poles. Thus it is a surface of revolution.

If the surface M has no ends or only one point
in its asymptotic boundary, one can similarly con-
clude that M is a surface of revolution (sphere or
horosphere). O

4. AN IMMERSED COUNTEREXAMPLE

In Sections 5 and 6, we give a rigorous proof of ex-
istence of the genus-one catenoid cousin. However,
since the proof itself does not enlighten the reader
as to why it should exist, we give a motivation in
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this section for why we should expect this surface
to exist.

As noted in Section 2, it was shown in [Ross-
man et al. 1997] that for any complete finite total
curvature minimal surface in R® which satisfies cer-
tain conditions, there exists a corresponding one-
parameter family of surfaces of constant mean cur-
vature 1 in H?. So, in this sense, the set of surfaces
of constant mean curvature 1 in H? is a larger set
than the set of minimal surfaces in R®. We now
briefly sketch the ideas behind the result in [Ross-
man et al. 1997]. We do not describe the method
in detail, as the reader can refer to [Rossman et al.
1997].

We start with a given minimal surface in R?, and
thus have a Riemann surface ¥ and meromorphic
functions f and ¢ given to us by the Weierstrass
representation for minimal surfaces in R® (Lemma
2.1). We can use this same ¥ and f and g in the
hyperbolic Weierstrass representation (Lemma 2.2)
to produce a surface of constant mean curvature c
in H? (—¢?) for each real number c.

As ¢ — 0, the Poincaré model for H?(—c?) (a
ball in R? with Euclidean radius 1/|c|) converges
to Euclidean space R®, and these surfaces of con-
stant mean curvature ¢ in H? (—c?) converge to the
given minimal surface (in the sense of €' uniform
convergence on compact sets). Thus, for ¢ close to
zero, we can think of compact regions of the sur-
faces of constant mean curvature ¢ in H?(—c?) as
small deformations of compact regions of the given
minimal surface in R.

If the given minimal surface in R® is not sim-
ply connected, there is a question about whether
the deformed surfaces of constant mean curvature
¢ in H?(—c?) are well-defined. This is the period
problem. (The period problem being solvable es-
sentially means that a certain set of equations

Perj ()\1) =0
can be solved with respect to certain parameters \;

of the surface. This will be explained in detail in
terms of an SU(2) condition in the next section.)

The minimal surface is assumed to have a “nonde-
generacy” property, as defined in [Rossman et al.
1997]. Since the period problem is nondegenerate
and solvable on the minimal surface, and since the
period problem changes continuously with respect
to ¢, it can still be solved when c is sufficiently
close to 0. Thus, for ¢ sufficiently close to 0, the
surfaces of constant mean curvature ¢ in H?(—c?)
are well-defined.

Dilating the Poincaré model for H?(—c*) by a
factor of |c|, as described in Section 2, we pro-
duce a one-parameter family of surfaces of constant
mean curvature 1 in H?, with parameter c¢. This is
the method used in [Rossman et al. 1997] to cre-
ate well-defined non-simply connected surfaces of
constant mean curvature 1 in H? from non-simply
connected minimal surfaces in R®.

As an example, consider the minimal genus-one
trinoid in R®. As discussed in [Berglund and Ross-
man 1995], there is a single real parameter A in
the Weierstrass data that can be adjusted to solve
the period problem. The period problem is rep-
resented by a map A € R — Per()\) € R, and to
solve the period problem we must show that there
exists a value of A so that Per(\) = 0. We note
that the function Per(\) changes continuously in
c. Since the period problem for the minimal genus-
one trinoid in R® (when ¢ is 0) is solvable and
nondegenerate, there exists an interval (a,b) € R
whose image under the map Per contains an inter-
val about 0. By continuity, if we perturb c slightly
away from 0, we still have 0 € Per(a,b). Thus,
for ¢ sufficiently close to zero, there exists a CMC
¢ genus-one trinoid cousin in H?(—c?). Then, by
dilating the Poincaré model, we produce a genus-
one trinoid cousin of constant mean curvature 1 in
H?(—1): see Figures 4 and 5.

Now we consider Weierstrass data that would
produce a minimal genus-one catenoid is R®. Again
there is a single real parameter A in the Weier-
strass data that can be adjusted, and again the
period problem is represented by a map A € R —
Per(A) € R, and to solve the period problem we
must again show that there exists a value of A so
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FIGURE 4. View of an embedded genus-one trinoid
cousin in the Poincaré model of hyperbolic space.

that Per(A) = 0. The Weierstrass data is described
in the next section. In this case the period problem
cannot be solved, since the function Per is always
positive. But Per can get arbitrarily close to 0, so
the interval (0, ¢) is contained in the image of Per,
for some € > 0. If we perturb c slightly, we ex-
pect that the image interval (0,¢) gets perturbed

g

continuously. We have found by numerical exper-
iment that when ¢ becomes slightly negative, the
image interval (0,e) changes to an image interval
of the form (e;,¢e,), where 0 < ¢; < €,. Thus, as
¢ becomes negative, the lower endpoint of the im-
age interval moves in a positive direction. If this
behavior were nondegenerate at ¢ = 0, one would
expect that as c is perturbed slightly in a positive
direction, the image interval would become of the
form (g1,¢€5), where £, < 0 < £,. We have found by
numerical experiment that this is indeed the case.
Thus, for slightly positive values of ¢, we can ad-
just a real parameter in the Weierstrass data so
that the period function Per becomes zero. Then,
after dilating the Poincaré model, we have exis-
tence of a genus-one catenoid cousin of constant
mean curvature 1 in H*(—1).

The behavior of the genus-one catenoid as c¢ is
perturbed is similar to the behavior of the genus-
one trinoid as ¢ is perturbed. As ¢ becomes neg-
ative, the genus-one trinoid cousin eventually be-
comes embedded. If the period problem could be
solved for the genus-one catenoid cousin when c is
negative, the resulting surface would be embedded;
as we know by Theorem 1.1, such a surface cannot
exist. But when solving the period problem for
¢ > 0, the genus-one catenoid cousin is not embed-
ded, in the same way that the genus-one trinoid

g

FIGURE 5. Slices of genus-one trinoid cousins along a plane of reflective symmetry. The picture on the left
corresponds to the embedded genus-one trinoid cousin of Figure 4, produced by using a negative value for c.
The one on the right is an immersed genus-one trinoid cousin, produced by using a positive value for c.
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cousin is not embedded for ¢ > 0. So this numeri-
cal experiment is consistent with Theorem 1.1, and
furthermore shows that Theorem 1.1 holds only for
embedded surfaces.

In the next sections, we will prove Theorem 1.2.
First we describe the Weierstrass representation
and the period problem. Then we give the proof.
Initially the period problem is three-dimensional.
We reduce it by algebraic arguments to a one-
dimensional problem, then we show by a numer-
ical calculation and the intermediate value theo-
rem that this reduced problem can be solved. The
remainder of the proof is essentially a mathemat-
ically rigorous verification that the numerical ex-
periment we conducted is correct. We must give
rigorous bounds for both computer round-off error
and for error introduced by discretizing the prob-
lem. We will show that the errors are sufficiently
small to ensure the existence of a solution to the
period problem.

5. THE PERIOD PROBLEM FOR THE GENUS 1
CATENOID COUSIN

Consider the Riemann surface .#* C Cx (CU{c0})
defined by the equation

(z—=1(z+a)w? = (z+1)(z —a),

where a > 1. Thus .#? is a twice punctured torus.
Let ¢ = w and let f = ¢/w, for ¢ > 0. (This ¢ is
the same as the ¢ described in the previous section,
and a is the same as X in the previous section.) The
Riemann surface .#? and meromorphic functions
g and f are the Weierstrass data for a genus-one
catenoid. Let F'(z,w) € SL(2,C) satisfy Bryant’s
equation

2
FldF:(g _9> dz
1 —g f

with initial condition F' = identity at z = 0, w = 1.
Hence ® = F-1F—1' is a surface of constant mean
curvature 1 in the Hermitian model for H?, and
this surface is defined on the universal cover of .Z?.
Representing @ in this way, we have already done

the dilation of hyperbolic space that produces a
surface of constant mean curvature 1 in H?(—1)
from a surface of constant mean curvature c in
H? (—c?).

We don’t yet know that @ is well-defined on .
itself (which must be the case if ® has finite total
curvature). For this to happen, F' must satisfy
the SU(2) condition, which we now state. Suppose
that v is a loop in .#? with base point p € .#?.
Suppose that the value of F' at p is F(p). Starting
with the initial condition F(p) and evaluating F
along v using Bryant’s equation above, we return
to the base point p with a new value F(p) for F at
p. If the loop v is nontrivial, we can expect that
F(p) # F(p). However, since both F(p) and F(p)
are in SL(2,C), there exists a matrix P € SL(2,C)
such that F(p) = P-F(p). If P € SU(2), it follows
that

FFol - ppT

Thus if P € SU(2) for any loop ~, then & is well-
defined on .7 itself. We say that the SU(2) con-
dition is satisfied on v if P € SU(2).

It is enough to check the SU(2) condition on the
following three loops, since they generate the fun-
damental group of .Z? (see Figure 6):

The curve vy, C .#7 starts at (0,1) € #2. Its
first portion has z coordinate in the first quadrant
of the z plane and ends at a point (z,w) where
z € Rand 1 < z < a. Its second portion starts
at (z,w) and ends at (0, —1) and has z coordinate

3 Y2
71
P N /’k\
7 N 4 \
N s
—a ro=1 \ |/~ 1 \ a
| |
_ A~
\\ // \\ //
~__7 \\_“/

FIGURE 6. Projection on the z-plane of the curves
Y1, 72, and 73, which generate the fundamental
group of /2.
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in the second quadrant. Its third portion starts at
(0,—1) and ends at (—z, 1/w) and has z coordinate
in the third quadrant. Its fourth and last portion
starts at (—z, 1/w) and returns to the base point
(0,1) and has z coordinate in the fourth quadrant.

The curve v, C 42 starts at (0,1). Its first por-
tion has z coordinate in the first quadrant and ends
at a point (z,w) where z € R and z > a. Its sec-
ond and last portion starts at (z,w) and returns to
(0,1) and has z coordinate in the second quadrant.

The curve v3 C .#? starts at (0,1). Its first por-
tion has z coordinate in the third quadrant and
ends at a point (z,w) where z € R and z < —a.
Its second and last portion starts at (z,w) and re-
turns to (0,1) and has z coordinate in the fourth
quadrant.

Consider the symmetries

L)OI(ZJU)) = (2,’117),

@2(va) = (_Zv 1/w)7

L)03(Z7w) = (_27 1/’(17)
from #? to 2. 1f (z(t),w(t)), for t € [0,1], is
a curve in .Z? that begins at (0,1) when ¢t = 0
and ends at some point (z,w) when ¢ = 1, then
we can consider how F' changes along (z(t), w(t)).
At the beginning point of (z(t),w(t)) let F(0,1)
be the identity, and denote the value of F' at the
ending point of (z(t),w(t)) by F(z,w). Then if we
consider the curve ¢;(z(t),w(t)), F is the identity
at the beginning of this curve as well, and we de-
note the value of F' at the end of this curve by
F(¢i(z,w)). The following lemma gives the rela-
tionships between F'(z,w) and F(p;(z,w)).

Lemma 5.1. If F(z,w) = (é’ IB;>’ then

Pt = (5 5 ).
Fiateo) = (3 ),
Fiatzu) = (5 G )

Proof. Suppose F'(0,1) is the identity and F =

A B\ . . .
( c D ) is a solution to the equation

(i in)=(e ) (s 1 )et

on (z(t),w(t)). Equivalently,

(i in)=(25) (g )

on (z(t),w(t)). Since when (z,w) — ¢1(z,w), we
have that z — z and ¢ — g, we conclude that

A B

C D
initial condition that F' is the identity is left un-
changed by conjugation, we conclude the first part
of the lemma. The above equation could also be
equivalently written as

D dC'\ (D C 1 —-1/g
(dB dA> - <B A) <g -1 >Cd(_z)'
Since when (z,w) — @y(z,w), we have z — —z
and ¢ — 1/g, we can conclude the second part of
the lemma in the same way. Since w3 = @2 0y,

the first two parts of the lemma imply the final
part. [l

(t
dB
d

t)
d
d

Qi

is a solution on ¢y (z(t),w(t)). Since the

In the next lemma, we consider the map p,(z,w) =
(z,—w). This map is different from ¢, ¢, s in
that (0,1) is not in the fixed point set of ¢,. Thus
when (z(t),w(t)) is a curve that begins at (0, 1),
the image ¢4(2(t), w(t)) is a curve that begins at
(0,—-1), not (0,1).

Lemma 5.2. Suppose that (z(t),w(t)) C #? is a
curve that starts at (0,1) and ends at a point (z,w)
such that z € R and 1 < z < a. Ewvalualing
Bryant’s equation along (2(t), w(t)) with initial con-
dition F(0,1) = identity, we denote the value of
) A B
F at the endpoint (z,w) by F(z,w) = (C’ D >
Then @4(z(t), w(t)) starts at (0,—1) and ends at
the same endpoint (z,w). If we evaluate Bryant’s
equation along @4 (z(t), w(t)) with initial condition
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F(0,—1) = identity, then the value of F at the
endpoint (z,w) of ps(z(t),w(t)) is

Fieo) = (g 5 )

Proof. Bryant’s equation can be equivalently writ-
ten as

(e in' )= (e ) (g B

The result follows just as in the previous proof. [

Let ay(t), for t € [0,1], be a curve starting at
(z,w)= (0,1) whose projection to the z-plane is an
embedded curve in the first quadrant, and whose
endpoint has a z coordinate that is real and larger
than 1 and less than a. Let ax(t), for ¢ € [0, 1], be
a curve starting at (z,w)= (0,1) whose projection
to the z-plane is an embedded curve in the first
quadrant, and whose endpoint has a z coordinate
that is real and larger than a. With F' = identity
at (z,w) = (0, 1), we solve Bryant’s equation along
these two paths to find

Fa) = (& 5 )

rotn- (2 %)

Then traveling about the loop 71, it follows from
Lemmas 5.1 and 5.2 that F' changes from the iden-
tity to the matrix ¢ given by

A B, 1:)1 3;1 D, -C, A} —_01

C]_ D]_ C]_ A]_ —B]_ A]_ —B]_ D]_ )
Traveling about the loop 7, it follows from Lemma
5.1 that F' changes from the identity to the matrix

b = Ay By Dg —_B2
“\C, Dy —-Cy, Ay )
And traveling about 73, F' changes from the iden-
tity to the matrix

D2 02 AZ _02
BQ AQ —B2 DQ ’

Changing the initial condition from F'(0,1) = iden-

tity to
a
F(Oul):(ﬂ O[)’

where o, 5 € R, a? — 3? = 1, we see that solving
the SU(2) conditions on all three loops 71, 7., and
v3 is equivalent to showing that

(5a)e( )
(5a)e( )

are both in SU(2). We can choose o and [ so that
this holds precisely when

 —2(A,Dy + D1 A, + C1 B, + B, ()
fi= D\Cy + C\Dy + Bi A, + A, By
_ 2(A;Dy — Dy Ay + CoBy — B,(h)
"~ DyC, — CyuDy + By Ay, — Ay By
and the absolute value of this number is greater
than 2. If this holds, we choose « and (3 so that

1+ 2052
V1 + p?

and then the SU(2) conditions are satisfied.

In order to prove Theorem 1.2, we need to show
there exist values ¢ and a so that ¢ > 0, a > 1,
|fil = |f2] > 2, and f; = f,. In this next sec-
tion we check that such values for ¢ and «a exist, by
doing a mathematically rigorous analysis of the er-
ror bounds for our numerical approximations. (See
Figure 7.)

and

= f27

flz :f27

6. ERROR ESTIMATES

Here we shall prove that for some given value of
a > 1 there exists a positive value for ¢ so that
fi = fz > 2. We do this by showing that for one
particular value for a, there exists a value of ¢ > 0,
call it ¢, so that f; > f; at ¢;, and there exists
another value of ¢ > ¢;, call it ¢o, so that f; < fo
at co. We also show that fi, fo € (2,+00) for all
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32

0.0496 0.0498 0.0502 0.0504

FIGURE 7. The functions f; (thin curve) and f,
(thick curve) when @ = 1.78. The horizontal axis
represents ¢, and the vertical axis represents f; and
f2. We see that f1, fo > 2 for ¢ € (0.0495,0.0505),
and f; = f, at some value of ¢, and a > 1.

values of ¢ € (¢;,¢y). Then, by the continuity of f;
and the intermediate value theorem, we conclude
that there exists a ¢ € [c;, ¢o] such that f; = fo > 2.

Furthermore, by continuity, for any other value
of a sufficiently close to our chosen value of a, there
also exists a positive value for ¢ so that f; = fo > 2,
and hence the genus-one catenoid exists for all a
sufficiently close to our chosen value of a. Thus,
with our method, showing existence for one value
of a is sufficient to conclude the existence of a one-
parameter family of genus-one catenoid cousins.
(However, we cannot draw any conclusions about
the possible range of the parameter a for this one-
parameter family.)

Thus, to prove Theorem 1.2, it is sufficient to do
the following;:

e We choose a suitable value for a and call it ay.
Then we choose suitable values for ¢; > 0 and
Cy > (1.

e Using the initial condition F'=identity, and the
value aq for a, and using the value ¢; for ¢, we
evaluate the Runge-Kutta algorithm approxi-
mation for the solution to Bryant’s equation
along the path «;(t). With each evaluation of
the Runge-Kutta algorithm, we make the eval-

uation by both rounding each mathematical op-
eration upward and rounding each mathemati-
cal operation downward. Thus for each output
of the algorithm, we can find a range in which
the theoretical value of the output of the algo-
rithm must lie.

e We then use Lemma 6.1, which gives an upper
bound on the absolute value of the difference
between the theoretical value of the output of
the algorithm and the actual value of the solu-
tion of Bryant’s equation. Using Lemma 6.1, we
can find a single bound which is valid for a = a,
and all ¢ € [¢1, ).

e We then have enough information to determine
that any possible approximation errors are small
enough to ensure that f; > fy at ¢; and that
fi < f2 at co.

e Then, it only remains to show that f; and fs
are both bounded and greater than 2 for all
¢ € [c1,¢2]. We do this by showing that the
derivative with respect to ¢ of the theoretical
value of the output of the algorithm is bounded
by a certain constant, for all ¢ € [¢;, ¢;]. This is
the purpose of Lemma 6.2; it allows us to place
limits on the rate at which the output of the
algorithm can change with respect to ¢. This
enables us to conclude that 2 < f; < oo for all
¢ € [¢1, ¢y] simply by checking that this is so at
a finite number of values of ¢ in [¢, ¢,].

Lemma 6.1. Let «(t), for t € [0,1], be a path in the
complex plane. Let

B B(1)
Flat) = <c<t> D(t) )

be an SL(2,C)-valued function on a(t) such that
F(a(0))=identity and F(«(t)) satisfies the equa-
tion

dA/dt dB/dt\ (A B chy chs
dC/dt dD/dt ) — \ C D chy chy )’
where ¢ 1s a real positive constant and h; are func-

tions on the complex plane satisfying the bounds
|hi| < M, |h}| < My, |hY| < M, |h)'| < M3 on
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a(t) fori=1,2,3,4. Assume also that h;, and hy
are constant functions, and choose n € Z so that
Mc/n< 0.01. Applying the standard Runge—Kutta
algorithm on the interval t € [0, 1], using n inter-
vals of equal length, let the resulting approximate
value for F(a(1)) produced by the Runge-Kutta al-
gorithm be denoted by the matriz

A B

C D)
Then |A(1)— A, |B(1)=B|, |C(1)~C], |D(1) - D|
are all bounded by

e
4.2¢M nt2

where ¢ = ((c,n, M, My, My, My) is a certain poly-
nomaial in siz variables.

2.1cM + @4'1CM

¢

We include the condition that h; and h, are con-
stant in Lemma 6.1, because this is sufficient for
our application, and this will later allow us to as-
sume a smaller lower bound for n. It also simplifies
the proof somewhat. However, it is not necessary
to assume h; and h, are constant in order to pro-
duce a lemma of this type.

Proof. The system of equations in the lemma can be
separated into two systems of two equations each:
one the system with variables A and B, and the
other with C' and D. We consider now the system
involving A and B:

dA B
E E = Ch3A+Ch4B.

Since |h;| < M for all ¢ € [0,1] and all i =
1,2,3,4, we conclude that

= ChlA + Cth,

—| < eM|Al+eM|B,

‘dA
dB
‘%‘ < cM|A| + cM|B|.

If we replace the inequalities in these equations by
equalities, we would be able to evaluate the system

explicitly with A(0) = 1 and B(0) = 0. It follows
that

Now we run the standard Runge-Kutta algo-
rithm on ¢ € [0, 1] for a system of two equations
with n steps of equal size % The initial conditions
are Ay = 1 and By = 0. The algorithm at step k is
this:

ko= (b1 () Awtha (7)) Be),

mo =1 (hs (3) Ax+1a(5) Br),

=< (ho (B4 2) (A2 ko) o (E41) (By+imy)),
my =2 (hs (2 4+ ) (Ae+2ko)+ha (B +L) (Bitimo)),
o =1 (b (5 437) (A3 F0)+ha (G 457) (Bik-3m),
o= < (hg (£ 1) (A 42k ) +ha (E+ L) (Bt 2my)),
s = < (hy (24 1) (Agthy)+ho (£ 4 1) (Bytms)),
my = 5 (s (5 43) (Aiha) +ha (5 47) (Bi+my)),

Apir = A+ (ko+2k1 +2ko+ks),
Bk+1 = Bh‘i‘% (m0—|—2m1 —|—2m2—|—m3) .

We define the local discretization errors for A
and B to be

di, ) = A(REL) = A(E) = L (o420 + 2k +hs),
dP ;= B(HL) —B(£) =L (rhg+ 2y + 210 +103)
where

ko = = (h(£)A(%) +ha(£) B(2)),

o = 5 (hs () A () +ha(5) B(3))s
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and ml,l%2,m2,l%3,m3 are defined analogously to
the way my, ks, my, k3, m3 were defined. We define
the maximums of the local discretization errors by

DA = max ||,
D? = max |d2|,
D := max(D*, D?).
We define the global discretization errors by
ot =A%) - Ay,
gP = B(£) - By,
gi = max(|gi’], l9¢])-

Since

A(%) - A(%) + Lo+ 2y + 2k + hy) + 2L
we have

gt = gt + Lko + 2k1 + 2k, + k)

— (ko + 2ky + 2k + k3) +dk+1,

and therefore we can compute that

9] < lgi|
+(%+02M2+203M3+C4M4> ‘A<E>—Ak
n? 3n3 3n* n
+(%+C2M2+2C3M3+C4M4> ‘B(ﬁ)—Bk
n? 3n3 3n* n
+[di -

We assumed that n > 100cM, so
1.05cM

1.05cM
gl < (14 == )lgit | + ge| + D,
Similarly,
1.05eM 1.05eM
98] < =gt )+ (1+ )lgk'| + D",
Thus,
2.1cM
gre1 < (1 + )gr + D.

By repeated application of this inequality we have

2.1cM>n (14+2.1cM/n)"
0 2.1cM/n

g < (14

And since gg = 0, we have

2.1cMn/n __ 1 ne2.1cM

e
D
2.1eM

< D
IS i ©

Here we have used the fact that e* is convex on R,
so 1+ < e* and therefore also (1+xz)" < (e*)" =
€™ for any positive .

Note that h; (£ + =), hi(2 + 1), and A(L 4+ 1)
have the following Taylor expansions:

’%(5%) - ()
(kK 1,k 1 ,,/k 1
+2nh ( )+8n2hl (E)JFM}“ ( +0%)

(E03)=n(l
() (e ().
(5 ) =) ke
1

v () (2t (505)

for appropriate values of 6 € [0, 1]. Here the sym-
bol ' denotes derivative with respect to t¢.
Repeatedly using the equalities A’ = chi A +
chy B and B' = ch3 A + chy B, the above Taylor ex-
pansion for A(% + %) can be rewritten in a longer
form so that it does not contain any terms of the
form A’, B, A", B", A", B", A" or B"". Using
this longer form for A(% + %), and using the above
Taylor expansions for hi(% + ﬁ) and hi(% + %),
we can make a direct (but long) calculation to de-
termine d‘,?H and df,, in terms of A, B, n, c,
h;, and the derivatives (up to third order) of h;.
These formulas are extremely long, so we do not
include them here. However, for each of them we
can take the sum of the absolute values of all of
the terms, and make the following replacements:

|h;| by its upper bound M, |h!| by its upper bound
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M, |hY| by its upper bound M, |h!’| by its upper
bound M3, and |A| and |B| by their upper bound
(1 + e**M). We then get upper bounds for |dg,, |
and |df, ,|. We can then find that a sufficient upper
bound for both |di, || and |dE, ] is

1+62CM
DSWQ

for an appropriate polynomial {. Thus

ne ne

2.1cM 2.1cM 1 + eZcM
D
2.1cM  — 2.1cM 2n!3

gn < ¢,

An identical argument gives the same conclusion
for C' and D. O

Lemma 6.2. Suppose that the conditions of Lemma
6.1 hold for all ¢ contained in some interval [c1, 2.
Then |0A/d¢|, |0B/d¢|, |0C/dc|, and |dD/dc| are
all bounded by 2.48Me**M¢ for all ¢ € [c1, ca).

Proof. We consider the system of two equations for
A and B here. The case for C and D is identical.
Recall that the Runge-Kutta algorithm is

Aj+1 — Aj 'I‘ %(ko 'I‘ 2k1 + 2]€2 + kg),
Bj+1 = Bj + %(mo + 2m1 + ng + mg).
We can expand out the terms of these two equa-

tions so that everything is written in terms of only
Aj, Bj, Aj+1, Bj+1 and hi7 C, . We then have

where Z is a polynomial that consists of the sum
of two terms of the form
ch. (*)
6n '

two terms of the form

ch. (*)
3n

six terms of the form

h. (%) h. (%)
612 ’

eight terms of the form

AEhy (%) h. (%) h. (%)
12n3 ’

and eight terms of the form

cthy () b (%) b (%) B ()
24n4 '

We will use Z to denote any polynomial of this
form, regardless of what the subindices are for the
functions h;(z) and regardless of the value of z(t)
at which we are evaluating the functions h;(z). (It
is for this reason that we are writing the functions
h;(z) merely as h,(x).) Although Z is not a well-
defined notation, for our purposes it will be suffi-
cient. It follows from the assumptions |h;| < M
and ¢ > 0 and Mc¢/n < 0.01 that

M 07z M M
1Z] <1225 and ‘—‘ <= (1+2.4—C),
n oc n n

regardless of what the indices of h; are and regard-
less of at which values of z(t) we evaluate the func-
tions h;.

Applying the Runge-Kutta algorithm on n steps
of equal length, we find that the resulting estimates
for A and B at a(1) are of the form

Ay = Ao +p(Z) Ao + p(Z) B,
By, = By + p(Z)Ao + p(Z) B,
where p(Z) is a polynomial in Z with

2 nn—-1)(n—-2)---(n—j+1)
7l

terms of the form Z7 for each 5 = 1,...,n. Thus
we have the bounds

0A,| |0B,
dc || Oc
"2 n(n—1)--- (n—j+1) |02
<2
- Z g! Jc
Jj=1
—~ 2n(n—1)-- - (n—j+1) . _; .]0Z
< -
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" 2nn—1)---(n—j+1) /. _Mc\i-!
<2 7 i(127)
7j=1

X (% (1+2.4 %))

Zj: (jijl)! (1.2Me)i L <M(1+2.4%)>

IN

Mey\ — 1 )
< 2M<1 2.4—) (24Mc)i
< +24— ]z:; G- ( c)
n—1 1
<248M ) i (2.4Mc)’
j=0
= 1 : .
<248M ) = (24Mc) = 2.48Me> M, 0
— 4!
7=0

Proof of Theorem 1.2. Recall that our surface is de-
scribed by the equation

(e oy )= (e 0) (1)

where

c
ga

(z+1)(z—qa)

J= (z—1)(z+a)

This system separates into two systems: one in-
volving A and B, and the other involving C' and
D. We now counsider the system involving A and B:

dA dB

— =cA+EB, — = —cgA — cB.

dz g dz
If we wish to evaluate this system along a curve
from zj to z;, linearly defined as (b — t)zy/(b — a)+
(t —a)z,/(b—a) for t € [a,b], then

dz 21— 2

dt  b—ua

for all ¢t € [a,b]. Our system can then be written
as

dA Z1 — 2o Z]_—Zol
= = A -B
it~ “b—a te b—a g’
dB Z1 — 2o Z1 — %o
— =— A— B.
T R e g

Set
Z1 — 2o Z]_—Zol
hy = hy = =
1 b_a7 2 b—a ga
21 — R0 Z1 — 2o
h - — = — .
3 b—a 9, h4 bh—a

Now we choose the paths a; (t) and «,(t), where
t € [0,1]. The paths will start at the point o, (0) =
az(0) = (0,1) in the base Riemann surface .#?
and will be defined by their z coordinates. The z
coordinates of the paths will be polygonal and ¢
will be defined linearly with respect to z-length on
each line segment. The path «4(t) will project to
a line segment from z = 0 (¢t =0) to z =1 + 0.4¢
(t = 0.67), then a line segment from z = 1+ 0.4¢
(t=0.67) to z=1(1 +a) (t =1). The path a(t)
will project to a line segment from z = 0 (¢t = 0) to
z = (a+0.2)40.7: (t = 0.686), then a line segment
from z = (a +0.2) +0.7¢ (t = 0.686) to z =a + %
(t=1).

We now solve Bryant’s differential equation along
«;(t). At the beginning point (z,w) = (0, 1), that
is, at t = 0, the initial condition will be F =
identity. Suppose that the true value of F' at the
endpoints is

Fa;(1)) = (éﬂj g) for j =1,2,
J J

and that the approximate value of F' at the end-
points produced by the Runge-Kutta algorithm us-
ing n steps of equal length is

A; B -
(éj D]), fOI‘j—l,2

Of course, the exact values of A;, B;,C;, D; can-
not be computed, but by considering the possible
round-off error for each mathematical operation in
the algorithm, and keeping track of the possible
cumulative round-off error, we can find intervals
in which they must lie. That is, we can find real
numbers fl}”, fl}”, fl?, fl?, B%”, B%-‘ﬂ B;T, Eéi, C’;”,
CN';-”, CN’jl-T, CN'J”, D;-”, D}-”, Dé—r, Dé—i (where ur stands
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for the upper bound of the real part, and so on)
such that

alka T Tur
;" < ReT; <1},
Tli 2 i
T < ImT; < T,

for T taking the values A, B,C,D and j = 1,2.
These bounds can be computed using code written
in a programming language such as C++ or For-
tran. They also could be computed using a shorter
code written in a scientific programming language
such as CXSC or PROFIL.

Choosing a to be 1.78, we find that we have
the following bounds for both paths: M = 4.6,
M, =48, M, = 850, M3 = 25000. (These bounds
are defined in Lemma 6.1.) Then, if we choose any
¢ € [0.0495,0.0505], from Lemma 6.1 we see that if
n > 500, the errors incurred by the Runge-Kutta
algorithm on A;, B;, C;, and D; are less than
€=0.00001. That is, |A A|<5|B Bj| < e,
IC; — C)| < &, and |D; — D;| < ¢, for all ¢ €
[0.0495,0.0505]. It follows that

forT=A,B,C,D and j =1,2.
The value of a is fixed, but ¢ is arbitrary in the

range [0 0495, 0.0505], so the numbers A;,...,D;,
A, A” . DlZ are all functions of c. To
show thls dependence we write A;(c),...,D;(c),
Aj(c), ..., Dj(e), A (c), ... ,Dé-i(c).
By Lemma 6.2, the numbers
DA, (c) 9B, (c) dC;(c) dD;(c)
‘80"80"80"80

are all bounded by 2.48Me2?*M¢ < 20 for all ¢ €
[0.0495,0.0505]. It follows that, if we choose any
¢ € [0.04999,0.05001], then A;(c), B;(c), C;(c),
and D;(c) can vary from their values at ¢ = 0.05 by
at most £ =0.0002. That is, |4, (c) — A4,(0.05)| < &,
|B;(c) — B;(0.05)] < ¢, |C;(c) — C;(0.05)| < &, and

|Dj(c) —f)j (0.05)| < ¢, for all ¢ € [0.04999, 0.05001].
We conclude that

T!"(0.05) — e — & < Re Tj(c)
T1(0.05) —e — & < Im Tj(c)

<TM(0.05) + ¢ + €,
< TH(0.05) + £ + &,

forT=A,B,C,D and j = 1,2 and all ¢ in the in-
terval [0.04999,0.05001]. This is sufficient to con-
clude that both fi, fo € (2,+00) for all ¢ in the
same interval. Checking in this way on many small
intervals (a finite number of intervals), we can con-
clude that 2 < fi, fo < oo for all ¢ € [0.0495, 0.0505].

Then, as we saw before, solving the period prob-
lem means solving f; = f» > 2. Running the
Runge-Kutta algorithm with ¢ = 0.0495, we con-
clude that

T!"(0.0495) —e < ReT;(0.0495)
T1(0.0495) —e < ImT;(0.0495)

17 (0.0495) + ¢,

T7(0.0495) +¢,

VARVAN

for T = A,B,C,D and 7 = 1,2. These esti-
mates are sufficient to show that f; > fy at ¢ =
0.0495. Similarly we can show that f; < fs at
¢ = 0.0505. We conclude that there exists a value
of ¢ € [0.0495,0.0505] so that f; = fo > 2.

We have thus shown of existence of at least one
genus-one catenoid cousin. Then, since the prob-
lem is continuous in a, we know that for all a suf-
ficiently close to 1.78 there exists a positive value
for ¢ so that f; = f; > 2. This proves existence
of a one-parameter family of genus-one catenoid
cousins. O
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