Abstract
A latin square is an $n\times n$ array of $n$ symbols in which each symbol appears exactly once in each row and column. Regarding each symbol as a variable and taking the determinant, we get a degree-$n$ polynomial in $n$ variables. Can two latin squares $L,M$ have the same determinant, up to a renaming of the variables, apart from the obvious cases when $L$ is obtained from $M$ by a sequence of row interchanges, column interchanges, renaming of variables, and transposition? The answer was known to be no if $n\le7$; we show that it is yes for $n=8$. The latin squares for which this situation occurs have interesting special characteristics.
Citation
David Ford. Kenneth W. Johnson. "Determinants of Latin squares of order {$8$}." Experiment. Math. 5 (4) 317 - 325, 1996.
Information