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A latin square is an n � n array of n symbols in which each

symbol appears exactly once in each row and column. Re-

garding each symbol as a variable and taking the determinant,

we get a degree-n polynomial in n variables. Can two latin

squares L;M have the same determinant, up to a renaming

of the variables, apart from the obvious cases when L is ob-

tained from M by a sequence of row interchanges, column

interchanges, renaming of variables, and transposition? The

answer was known to be no if n � 7; we show that it is yes forn = 8. The latin squares for which this situation occurs have

interesting special characteristics.

1. INTRODUCTIONA latin square of order n is an n�n array of n sym-bols, usually denoted by f1; : : : ; ng, in which eachsymbol appears exactly once in each row and ineach column. Standard references are [D�enes andKeedwell 1974; 1991]. The unbordered multiplica-tion table of any group forms a latin square. Forexample, the cyclic group C4 of order 4, with ele-ments in the order a0, a1, a3, a2, yields the square2664 1 2 3 42 4 1 33 1 4 24 3 2 13775 :An arbitrary latin square is the unbordered multi-plication table of a quasigroup (a set with a binaryoperation with left and right cancellation).The matrix XL of a latin square L is obtainedby replacing each element i in L by the variablexi. The determinant of L is �L = detXL; if L hasorder n, its determinant is a homogeneous polyno-mial of degree n in n variables. c A K Peters, Ltd.1058-6458/96 $0.50 per page



318 Experimental Mathematics, Vol. 5 (1996), No. 4Two polynomials ',  in fx1; : : : ; xng are similarif there exists a permutation � in Sn such that'(x1; : : : ; xn) = � (x�(1); : : : ; x�(n)).Latin squares L and M are isotopic if M can beobtained from L by a sequence of row interchanges,column interchanges, and renaming of elements.More precisely, squares L and M are isotopic ifthere exist permutations �1, �2, �3 such thatM(i; j) = �L(i�1; j�2)��3for all i, j. It is clear that isotopic latin squareshave similar determinants, as do L and its trans-pose Lt.If G is a group, the group matrix XG is the ma-trix corresponding to the latin square whose (g; h)-entry is gh�1. Thus, the group matrix for C4 is2664x1 x3 x2 x4x2 x1 x4 x3x3 x4 x1 x2x4 x2 x3 x1 3775 :The group matrix is interesting because X2G hasexactly the same pattern as XG, with xi replacedbyPjk=i xjxk. In fact, XnG has the same symmetryfor all n. This follows from the fact, proved byFrobenius, that XGYG = ZG, where YG = fygh�1g,ZG = fzgh�1g and zk =Pgh=k xgyh. It follows thatif G is commutative then XG and YG commute, aresult we apply below. The group determinant �Gof G is det(XG).The investigation of �G led Frobenius to thecharacter theory of nonabelian groups [Frobenius1896; Hawkins 1971; 1974; Johnson 1991; 1993].A latin square determinant �L may be written asdet (Pni=1 �ixi), where the �i are permutation ma-trices.Results in the theory of invariants of a �nite setof n � n matrices suggest that �L alone will notcharacterise L up to isotopy and transposition; butin the case of group latin squares, the determi-nant �G does determine G [Formanek and Sibley1991]. More surprisingly, the sequence of coe�-cients of monomials in �G of the form xn�31 xgxhxk

(or equivalently the \regular 3-character") deter-mines G [Hoehnke and Johnson 1992].A character theory is available for quasigroupsor latin squares, developed by one of the authorsand J. D. H. Smith. As in the group case, thetheory can be developed from �L, but as mightbe expected the characters give less informationin the quasigroup case. We refer to [Johnson 1988;1992] and the references given there for the details.Before embarking on an investigation of \highercharacters" that arise from the determinant in ananalogous manner to the k-characters of groups[Hoehnke and Johnson 1992], it appears appropri-ate to determine the extent of the information onL that is contained in �L.Let E be the equivalence relation on the set oflatin squares of order n in which L is related toM ifL is isotopic toM orM t. A basic question for latinsquare determinants is this: Are there squares L,M that are not E-equivalent but have similar de-terminants? Note that squares arising from groupsare E-equivalent if and only if the groups are iso-morphic.Previously it has been shown that for n � 7 anytwo latin squares with similar determinants are E-equivalent. The cases n � 1; 2; 3; 4 are easy. Cases5 and 6 can be checked by direct calculation us-ing symbolic manipulation packages, and the casen = 7 is handled in [Ferguson 1989]. Here we de-scribe calculations that settle the case n = 8. Wehave found that of the 842227 E-classes all but 37have dissimilar determinants. The 37 exceptionalE-classes merge into 12 classes of squares with sim-ilar determinants, each containing between 2 and7 distinct E-classes. Moreover, the exceptionalsquares are all of a special type, in that they areisotopic to squares of the form �QS RT �, where Q andT are latin squares on f1; 2; 3; 4g and R and S arelatin squares on f5; 6; 7; 8g. Since any latin squareof order 4 is isotopic to a square arising from agroup, the determinants may be described in termsof the group matrices of the two groups of order4. Using the properties of group matrices givenabove it is reasonably easy to �nd the symbolic



Ford and Johnson: Determinants of Latin Squares of Order 8 319determinants of the 37 exceptional squares by handand to write the results in a compact form. Thiscontrasts with a typical latin square determinantof order 8, which cannot in practice be calculatedby hand, since it occupies several pages when ex-pressed in monomials.From the point of view of invariants of matrices,our calculations show that a pair of latin squaresof order 8 have identical determinants if and onlyif the coe�cients of all monomials xnii xnjj xnkk xnmm ,where ni + nj + nk + nm = 8, coincide.Section 2 describes the details of the computa-tion. Section 3 contains a representative list ofexceptional squares with their determinants, andexamples of how hand calculation of the determi-nants can be carried out. Other invariants of theexceptional E-classes are listed. In Section 4 we in-dicate how to use pairs of E-inequivalent squaresof order n with similar determinants to constructsquares of order kn that are E-inequivalent buthave similar determinants. We conclude with someremarks and questions.
2. OVERVIEW OF THE COMPUTATIONThe computations were performed in Pascal andMaple on a DIGITAL VAXstation 4000-90 in theComputer Science Department at Concordia Uni-versity. We started with representatives for the283657 main classes of 8 � 8 latin squares, pro-vided by Kolesova [Kolesova et al. 1990]. For eachmain class representative, we computed row andcolumn conjugates, thus obtaining a set of 850971squares that represent (with some redundancy) allthe E-classes.
1. For each representative L, we calculated �L(v)for the 56 distinct permutations v of(1; 1; 1; 0; 0; 0; 0; 0);and computed nm, nz, and np, the number ofchoices of v for which �L(v) was negative, zero,and positive, respectively. The set fnm; npg isinvariant for latin squares with similar determi-nants. CPU time: 4h 40min.

2. For each representative L, we calculated �L(v)for the 168 distinct permutations v of(1; 1; 2; 0; 0; 0; 0; 0);and computed sm, sp, and sq, respectively thesums of the negative values, positive values, andsquares of values of �L(v). The sum sq andthe set fjsmj; spg are invariant for latin squareswith similar determinants. By sorting, we deter-mined which triples t = (fnm; npg; fjsmj; spg; sq)appeared only once. Discarding the correspond-ing representatives, we eliminated all but 17596of the representatives. CPU time: 15h 25min.
3. We tested representatives with same values ofthe invariant triple t for isotopy and transposedisotopy, eliminating redundantE-class represen-tatives. After this step, 529 representatives re-mained. Incidentally, we con�rmed at this pointthat there are exactly 842227E-classes, in agree-ment with [Kolesova et al. 1990, Table IV]. CPUtime: 23h 43min.
4. For each surviving representative L, we com-puted �L(v) for the 1680 distinct permutationsv of (1; 2; 3; 5; 0; 0; 0; 0). This sequence of val-ues, when sorted and paired with its negative,is invariant for latin squares with similar de-terminants. For all but 37 representatives thisinvariant was unique; altogether these 37 excep-tional representatives had 12 distinct invariants.CPU time: 28min.
5. For representatives with coincident (1; 2; 3; 5)-sequence values, we searched the isotopy classesto produce representatives with same (1; 1; 1)-sequence and (1; 1; 2)-sequence determinant val-ues. CPU time: 36min.
6. We computed the symbolic determinant for eachof the 37 representative squares, obtaining 12distinct determinants, all dissimilar. CPU time:10min.
3. EXPERIMENTAL RESULTSConsider the equivalence classes induced on the setof 8� 8 latin squares by similarity of determinant.



320 Experimental Mathematics, Vol. 5 (1996), No. 4d1 = 2f2v � 2f2w1:1 A B B A (234)1:2 A B (234)B(234) (234)A (243)1:3 A B B (243)A (234)1:4 A B (34)B(34) (34)A (24)1:5 A B (34)B(34) (23)A (24)1:6 A B (243)B(243) (24)A (34)1:7 A B (24)B(24) (234)A (243)d2 = 2f2v + 2f2w � 2(v24 + w24)v2v3w2w32:1 A B (243)B(243) (23)A (243)2:2 A B (23)B(23) (243)A (23)d3 = 2fvgv + 2f2w � (v2 + v3)(v2v3w24 + w22w23)v43:1 A B B (24)D(243)3:2 A B (23)B(23) (243)D(24)d4 = 2fvgv + 2f2w � (v2 + v3)(v2w24 + v3v24)w2w34:1 A B (243)B(243) (243)D(23)4:2 A B (243)B(243) (23)D(243)4:3 A B (23)B(23) (23)D(243)4:4 A (34)B(34) (243)B(243) (243)D(23)d5 = 2fvgv + 2f2w � (v2 + v3)(v2v3 + w22)v4w3w45:1 A B (34)B(34) (24)D(243)5:2 A B (234)B(234) (243)D(24)5:3 A B (234)B(234) (24)D(243)d6 = 2fvgv + 2f2w � (v2 + v3)(v2w23w24 + v3v24w22)6:1 A B B (23)D(243)6:2 A B (34)B(34) (243)D(23)d7 = 2fvgv + 2f2w + (v2 + v3)(v2w23w24 + v3v24w22)7:1 A B B D(1423)7:2 A B (34)B(34) (34)D(13)(24)d8 = 2fvgv + 2fwgw � (v2w2 + v3w3)(v2v3w3 + w2w24)v48:1 A (34)B(34) (243)C (243) (243)D(24)8:2 A (34)B(34) (24)C (24) (24)D(243)8:3 A (234)B(234) (243)C (243) (243)D(24)8:4 A (234)B(234) (24)C (24) (24)D(243)d9 = 2fvgv + 2fwgw � (v2w2 + v3w3)(v2v3 + w2w3)v4w49:1 A (23)B(23) (24)C (24) (24)D(243)9:2 A B (24)C (24) (24)D(243)d10 = 2fvgv + 2fwgw � (v2w2 + v3w3)(v2v24w2 + v3w3w24)10:1 A (234)B(234) (23)C (23) (23)D(234)10:2 A (23)B(23) (23)C (23) (23)D(234)10:3 A (234)B(234) (24)C (24) (24)Dd11 = 2fvgv + 2fwgw � (v2w2 + v3w3)(v2w3w24 + v3v24w2)11:1 A (34)B(34) (23)C (23) (23)D(243)11:2 A (34)B(34) (243)C (243) (243)D(23)11:3 A B (243)C (243) (243)D(23)d12 = 2fvgv + 2fwgw + (v2w2 + v3w3)(v2w3w24 + v3v24w2)12:1 A (34)B(34) (23)C (23) (23)D(142)12:2 A (34)B(34) (243)C (243) (243)D(1342)12:3 A B (23)C (23) (23)D(142)
TABLE 1. For each of the 12 determinant similarity classes comprising more than one E-class, we show onerepresentative �QS RT � of each component E-class in the form (class identi�er, Q, R, S, T ). See page 321.



Ford and Johnson: Determinants of Latin Squares of Order 8 321All but twelve of these similarity classes coincidewith E-classes; the exceptional classes are unionsof two or more E-classes.For each exceptional class, Table 1 shows repre-sentatives of the distinct E-classes from which it iscomposed. These representatives all have the samedeterminant, which Table 1 shows in terms of thepolynomialsv1 = x1 + x2 + x3 + x4;v2 = x1 + x2 � x3 � x4;v3 = x1 � x2 + x3 � x4;v4 = x1 � x2 � x3 + x4;fv = v2v3v4;gv = 12(v22 + v23)v4;
w1 = x5 + x6 + x7 + x8;w2 = x5 + x6 � x7 � x8;w3 = x5 � x6 + x7 � x8;w4 = x5 � x6 � x7 + x8;fw = w2w3w4;gw = 12(w22 + w23)w4;and with a common factor of � 12(v21 � w21) sup-pressed. Also in the table, A, B, C, D stand forA = 2664 1 2 3 42 1 4 33 4 1 24 3 2 13775 ;C = 2664 5 7 6 86 5 8 77 8 5 68 6 7 53775 ;
B = 2664 5 6 7 86 5 8 77 8 5 68 7 6 53775 ;D = 2664 1 3 2 42 1 4 33 4 1 24 2 3 13775 ;and the notation �S� indicates that permutation �is applied to the rows of S and permutation � isapplied to the columns of S; thus(234)A(243) = 2664 1 3 4 24 2 1 32 4 3 13 1 2 43775 :Each of the 8�8 latin squares in Table 1 is of theform �QS RT �, with the 4�4 latin squares Q, R, S, Tshown sequentially.As a sample, we o�er on page 322 the calculationof the determinants of the squares in classes 1:1 and8:1. We use the following well-known result.

Proposition. If Q, R, S, T are n � n matrices anddet Q 6= 0 thendet�Q RS T � = detQ � det(T � SQ�1R):In particular , if Q commutes with R thendet�Q RS T � = det(TQ� SR);and if Q commutes with S thendet�Q RS T � = det(QT � SR):
Proof.�Q RS T � = �Q 0S I �� I Q�1R0 T � SQ�1R� : �
Mapping groups and automorphism groupsThe left mapping group M�(L) is the group gener-ated by the permutations given by the rows of L;the right mapping group M�(L) is generated by thepermutations given by the columns. For example,the row 4 1 3 5 2 6 8 7 represents the permutation(1 4 5 2)(7 8). The full mapping group M(L) is thegroup generated by M�(L) and M�(L). If L arisesfrom the Cayley table of a group G, then M�(L)and M�(L) are isomorphic to G and correspond tothe left and right regular representations of G, andM(L) is isomorphic to Inn(G) o G where Inn(G)denotes the group of inner automorphisms of G.If L1, L2 are in reduced form and L1 is isotopicto L2 then M�(L1), M�(L1), M(L1) are respec-tively isomorphic to M�(L2), M�(L2), M(L2) [Al-bert 1943]. It is obvious thatM�(L) =M�(Lt) andM(L) ' M(Lt). Hence M and the set fM�;M�gare invariants of an E-class.The automorphism group Aut(L) of L is thegroup of triples of permutations (�1; �2; �3) which�x L in the sense that(L(i�1; j�2)) �3 = L(i; j) for all i; j.Aut(L) is an invariant of the E-class of L.
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Sample determinant calculations. For simplicity we write A, B, C and D for XA, XB , XC and XD. SettingP =0BBB@ 12 12 12 1212 12 � 12 � 1212 � 12 12 � 1212 � 12 � 12 12 1CCCA; I =0BB@ 1 0 0 00 1 0 00 0 1 00 0 0 11CCA; and 8>>>><>>>>: v5=x1�x4= 12 (v2+v3);v6=x2�x3= 12 (v2�v3);w5=x5�x8= 12 (w2+w3);w6=x6�x7= 12 (w2�w3);we havePAP =2664 v1 0 0 00 v2 0 00 0 v3 00 0 0 v4 3775; PBP =2664w1 0 0 00 w2 0 00 0 w3 00 0 0 w4 3775; PCB=2664w1 0 0 00 w5 w6 00 �w6 w5 00 0 0 w4 3775; PDB=2664 v1 0 0 00 v5 v6 00�v6 v5 00 0 0 v4 3775;moreover P�1=P and PI� = I�P for any permutation � of f2; 3; 4g. The following sample derivations usethese equalities and the proposition on page 321.
Class 1:1����A BB A(234) ����= ��A2(234)�B2 ��= ��P �A2(234)�B2�P ��= ��PA2P(234)�PB2P ��= ��������2664 v21 0 0 00 v22 0 00 0 v23 00 0 0 v24 37752664 1 0 0 00 0 1 00 0 0 10 1 0 03775�2664w21 0 0 00 w22 0 00 0 w23 00 0 0 w24 3775��������= ��������� v21�w21 0 0 00 �w22 v22 00 0 �w23 v230 v24 0 �w24 ���������= �v21�w21� �v22v23v24�w22w23w24� :
Class 8:1���� A (34)B(34)(243)C(243) (243)D(24) ����= �� (243)D(24)A� (243)C(243) (34)B(34) ��= ��P �(243)D(24)A� (243)C(243) (34)B(34)�P ��= �� (243)PDP(24) PAP � (243)PCP(243) (34)PBP(34) ��= ��������2664 1 0 0 00 0 1 00 0 0 10 1 0 037752664 v1 0 0 00 v5 v6 00�v6 v5 00 0 0 v4 37752664 1 0 0 00 0 0 10 0 1 00 1 0 03775PAP �2664 1 0 0 00 0 1 00 0 0 10 1 0 037752664w1 0 0 00 w5 w6 00 �w6 w5 00 0 0 w4 37752664 1 0 0 00 0 0 10 1 0 00 0 1 03775(34)PBP(34) ��������= ��������2664 v1 0 0 00 0 v5 �v60 v4 0 00 0 v6 v5 37752664 v1 0 0 00 v2 0 00 0 v3 00 0 0 v4 3775�2664w1 0 0 00 w5 0 �w60 0 w4 00 w6 0 w5 37752664w1 0 0 00 w2 0 00 0 w4 00 0 0 w3 3775��������= ��������2664 v21 0 0 00 0 v3v5 �v4v60 v2v4 0 00 0 v3v6 v4v5 3775�2664w21 0 0 00 w2w5 0 �w3w60 0 w24 00 w2w6 0 w3w5 3775��������= ��������� v21�w21 0 0 00 �w2w5 v3v5 �v4v6+w3w60 v2v4 �w24 00 �w2w6 v3v6 v4v5�w3w5 ���������=� �v21�w21� �v2v3v24(v25+v26)+w2w3w24(w25+w26)�v4(v2v3w3+w2w24)(v5w5+v6w6)� :



Ford and Johnson: Determinants of Latin Squares of Order 8 323E-cl M� M� M a1:1 96 32 288 961:2 32 32 960 1921:3 96 96 288 481:4 96 32 192 641:5 96 96 576 641:6 64 64 5760 161:7 64 64 5760 322:1 96 64 1152 322:2 32 64 1152 32

E-cl M� M� M a3:1 1152 1152 1152 43:2 1152 1152 1152 44:1 1152 128 1152 44:2 1152 1152 1152 44:3 1152 128 1152 44:4 1152 1152 1152 45:1 128 1152 1152 45:2 1152 1152 1152 45:3 128 128 1152 4

E-cl M� M� M a6:1 1152 128 1152 86:2 1152 128 1152 87:1 1152 128 1152 87:2 1152 128 1152 88:1 192 1152 1152 48:2 576 1152 1152 48:3 5760 1152 1152 48:4 5760 1152 1152 49:1 192 128 1152 89:2 5760 128 1152 8

E-cl M� M� M a10:1 64 1152 1152 810:2 576 128 1152 410:3 5760 1152 1152 811:1 640 1152 1152 1611:2 192 1152 1152 1611:3 5760 128 1152 812:1 640 1152 1152 1612:2 192 1152 1152 1612:3 5760 128 1152 8
TABLE 2. Mapping groups of representatives of the 37 exceptional E-classes, and size a of the automorphismgroup of the classes. Key for the groups, in GAP notation: 32=E(8):E4=[22]D(4), 64= 12 [24]dD(4)=E(4)2:D12,640 = E(8):D8 = [23]D(4), 96 = E(8):A4 = [ 13A(4)2]2 = E(4):6, 960 = 12 [E(4)2:S3]2 = E(4)2:D6, 128 = [24]D(4),192 = E(8):S4 = [E(4)2:S3]2, 288 = [A(4)2]2, 576 = [ 12S(4)2]2, 5760 = 12 [S(4)2]2, 1152 = [S(4)2]2.Table 2 listsM�,M�, andM for a representativeof each of the 37 exceptional E-classes (in reducedform), and gives the size a of the automorphismgroup of the class. The mapping groups are iden-ti�ed by their orders, and the corresponding nota-tion from GAP [Sch�onert et al. 1994] is shown.

4. CONCLUSIONIt is intriguing that of the large number ofE-classesof squares of order 8 so few lie in the exceptionalclasses, and that the squares in these classes allhave the regular form described above. This formmay be described algebraically as follows. A latinsquare L in reduced form de�nes a loop Q withbinary operation : byi:j = L(i; j)(see [Johnson 1992], for example). All the loops Qarising from squares in the exceptional E-classesare (non-associative) extensions of the form1 �! C2 � C2 �! Q �! C2 �! 1:The squares of order 8 arising from loops Q thatare extensions of the form1 �! C2 �! Q �! C2 � C2 �! 1

were investigated in [Johnson 1988; 1992], and itwas found that distinct E-classes had dissimilardeterminants. Our expectation was that if distinctE-classes had similar determinants, this would bemost likely to occur among squares which had littleregularity.Once we have squares L1, L2 of order n in dis-tinct E-classes with similar determinants, we canproduce squares of higher orders with similar de-terminants as follows. Let L(j) be the square ob-tained from L by replacing the element k by k+nj,j = 1; : : : ; r, and let rL be de�ned as2666664L(1) L(2) � � � L(r�1) L(r)L(2) L(3) � � � L(r) L(1)... ... ... ...L(r) L(1) � � � L(r�2) L(r�1)
3777775 :It is readily seen using [Muir and Matzler 1960,p. 487] that �rL is given by(�1)(r�1)(r�2)=2�r�1Yj=0 det�XL(1)+�jXL(2)+�2jXL(3)+� � �+�(r�1)jXL(r)�;



324 Experimental Mathematics, Vol. 5 (1996), No. 4where � = e2�i=r. Hence �rL is obtained from �Lby replacing xk withxk + �hxk+n + � � �+ �(r�1)hxk+(r�1)n:It follows that �rL1 and �rL2 are similar.We remark that if L has left and right mappinggroups M� and M� then the corresponding groupsfor rL arerM� =M� o Cr and rM� =M� o Cr;where o indicates the wreath product. Thus, if thesquares L1 and L2 are chosen so that the setsfjM�(L1)j; jM�(L1)jg and fjM�(L2)j; jM�(L2)jgare distinct (for example, if L1 = 1:1 and L2 = 1:2in Table 1), it follows from considerations of ordersthat the sets fM�(rL1);M�(rL1)g and fM�(rL2);M�(rL2)g are also distinct, so that rL1 and rL2 areE-inequivalent, using the result in [Albert 1943]mentioned above. Thus we have E-inequivalentsquares with similar determinants for all orders ofthe form 8k, for k = 1; 2; : : : .
Questions. 1. For which other orders are there E-inequivalent squares with similar determinants?
2. Are there E-inequivalent squares with trivialautomorphismgroup with similar determinants?
3. Are there E-inequivalent squares with full map-ping group Sn with similar determinants?
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