Open Access
2009 Rationality of Moduli Spaces of Plane Curves of Small Degree
Christian Böhning, Hans-Christian Graf von Bothmer, Jakob Kröker
Experiment. Math. 18(4): 499-508 (2009).

Abstract

We prove that the moduli space $C(d)$ of plane curves of degree $d$ (with respect to projective equivalence) is rational except possibly if $d= 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 23, 24, 26, 32, 48$.

Citation

Download Citation

Christian Böhning. Hans-Christian Graf von Bothmer. Jakob Kröker. "Rationality of Moduli Spaces of Plane Curves of Small Degree." Experiment. Math. 18 (4) 499 - 508, 2009.

Information

Published: 2009
First available in Project Euclid: 25 November 2009

zbMATH: 1184.14025
MathSciNet: MR2583546

Subjects:
Primary: 14E08 , 14L24 , 14M20

Keywords: group quotients , moduli spaces , plane curves , rationality

Rights: Copyright © 2009 A K Peters, Ltd.

Vol.18 • No. 4 • 2009
Back to Top