Open Access
2008 Computing Central Values of Twisted $L$-Series: The Case of Composite Levels
Ariel Pacetti, Gonzalo Tornaría
Experiment. Math. 17(4): 459-472 (2008).


We describe a general method to compute weight-$\frac32$ modular forms ``associated'' with a given weight-$2$ modular form $f$ of level $N$, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of $L(f,s)$. We will focus on examples for levels $N = 27$, $N = 15$, and $N=75$.


Download Citation

Ariel Pacetti. Gonzalo Tornaría. "Computing Central Values of Twisted $L$-Series: The Case of Composite Levels." Experiment. Math. 17 (4) 459 - 472, 2008.


Published: 2008
First available in Project Euclid: 27 May 2009

zbMATH: 1211.11060
MathSciNet: MR2484430

Primary: 11F37
Secondary: 11F67

Keywords: $L$-series , quadratic twists , Shimura correspondence

Rights: Copyright © 2008 A K Peters, Ltd.

Vol.17 • No. 4 • 2008
Back to Top