Open Access
2006 Combinatorial Random Walks on 3-Manifolds
Markus Banagl
Experiment. Math. 15(3): 367-381 (2006).

Abstract

We define a combinatorial, discrete-time random walk on a closed, triangulated 3-manifold. As one varies the triangulation, keeping the number of tetrahedra fixed, the maximal mean commute time of the random walk becomes a random variable on a finite, uniform probability space of triangulations. Using computer experiments, we obtain empirical density functions for these random variables. The densities are then applied in developing Bayes-type heuristics that allow a walking entity, moving randomly in an unknown 3-manifold, to obtain probabilistic information about which manifold it might be moving in. Mean commute times are calculated via the effective electrical resistance of certain quartic graphs associated with the random walk. As a by-product, we define a topological invariant, the electrical resistance, of a 3-manifold, which we interpret as a refined complexity measure with values in the rational numbers.

Citation

Download Citation

Markus Banagl. "Combinatorial Random Walks on 3-Manifolds." Experiment. Math. 15 (3) 367 - 381, 2006.

Information

Published: 2006
First available in Project Euclid: 5 April 2007

zbMATH: 1112.60004
MathSciNet: MR2264473

Subjects:
Primary: 60B99
Secondary: 57N10 , 60G50

Keywords: 3-manifolds , electrical resistance , Random walks , Statistical topology

Rights: Copyright © 2006 A K Peters, Ltd.

Vol.15 • No. 3 • 2006
Back to Top