Open Access
2001 On the Inhomogeneous Hall's Ray of Period-One Quadratics
Christopher G. Pinner, Dan Wolczuk
Experiment. Math. 10(4): 487-496 (2001).

Abstract

For quadratics with period-one negative continued fraction expansions,

X\theta =\frac{1}{ a-{\dfrac{\mathstrut 1}{a-{\dfrac{\mathstrut 1}{a- \cdots }}}}},

we show that the inhomogeneous Lagrange spectrum,

\bL (\theta) :=\bigl\{ \liminf\nolimits_{|n|\rightarrow \infty} |n|@\|n\theta -\gamma\| : \gamma \in \funnyR,\; \gamma \not\in \funnyZ+\theta \funnyZ\bigr\},

contains an inhomogeneous Hall's ray $[0,c(\theta)]$ with $$c(\theta)=\tfrac{1}{4}\bigl(1-O(a^{-1/2})\bigr)\hbox{.}

We describe gaps in the spectrum showing that this is essentially best possible. Pictures of computed spectra are included. Investigating such pictures led us to these results.

Citation

Download Citation

Christopher G. Pinner. Dan Wolczuk. "On the Inhomogeneous Hall's Ray of Period-One Quadratics." Experiment. Math. 10 (4) 487 - 496, 2001.

Information

Published: 2001
First available in Project Euclid: 26 November 2003

zbMATH: 1028.11043
MathSciNet: MR1881749

Rights: Copyright © 2001 A K Peters, Ltd.

Vol.10 • No. 4 • 2001
Back to Top