Open Access
2010 Maximum likelihood estimation of nonnegative trigonometric sum models using a Newton-like algorithm on manifolds
Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez
Electron. J. Statist. 4: 1402-1410 (2010). DOI: 10.1214/10-EJS587

Abstract

In Fernández-Durán [4], a new family of circular distributions based on nonnegative trigonometric sums (NNTS models) is developed. Because the parameter space of this family is the surface of the hypersphere, an efficient Newton-like algorithm on manifolds is generated in order to obtain the maximum likelihood estimates of the parameters.

Citation

Download Citation

Juan José Fernández-Durán. María Mercedes Gregorio-Domínguez. "Maximum likelihood estimation of nonnegative trigonometric sum models using a Newton-like algorithm on manifolds." Electron. J. Statist. 4 1402 - 1410, 2010. https://doi.org/10.1214/10-EJS587

Information

Published: 2010
First available in Project Euclid: 9 December 2010

zbMATH: 1264.49029
MathSciNet: MR2741206
Digital Object Identifier: 10.1214/10-EJS587

Subjects:
Primary: 49M15 , 62G07
Secondary: 49Q99

Keywords: Differential geometry , maximum likelihood estimation , Newton algorithm , nonnegative Fourier series , smooth Riemann manifold

Rights: Copyright © 2010 The Institute of Mathematical Statistics and the Bernoulli Society

Back to Top