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1. Introduction

The probability density function, f(x; θ), of a circular random variable X ∈
(0, 2π] must be nonnegative and periodic (f(x + 2kπ; θ) = f(x; θ)) for any
integer k where θ is the vector of parameters. Practical examples of circular
random variables include the wind directions at different monitoring stations,
the directions taken by an animal, the times at which a person conducts a daily
activity, the time of occurrence of different events, and many others. Based
on the results of Féjer [3], Fernández-Durán [4] derived a family of circular
distributions based on nonnegative trigonometric sums (see also [5]). In short,
the nonnegative trigonometric sum is expressed as a squared norm of a complex
number. The circular density function based on nonnegative trigonometric sums
(NNTS density) is expressed as

f(x;M, θ) =
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Note that i =
√
−1 and, θk = θrk + iθck are complex numbers for k = 0, . . . ,M ,

and, θ̄k = θrk − iθck is the conjugate of θk. To integrate to one, it is necessary
to impose the following constraint in the θ parameters.

M
∑

k=0

||θk||2 =
1

2π
. (2)

Note that θc0 = 0 and θr0 ≥ 0; i.e., θ0 is a nonnegative real number. Thus,
the θ parameter space corresponds to the surface of a 2M + 1 dimensional
hypersphere. This family of circular distributions has the advantage of being able
to fit datasets that present multimodality and/or skewness because the density
function can be expressed as a mixture of multimodal circular distributions. The
total number of θ free parameters is equal to 2M .

The main objective of this paper is to develop an efficient Newton-like op-
timization algorithm on the surface of a hypersphere that corresponds to a
Riemann manifold, in order to obtain the maximum likelihood estimates of the
θ parameters.

The paper is divided into five sections, including this introduction. The second
section presents a convenient, alternative way to express likelihood functions
for continuous and grouped data in the univariate case. Given these convenient
expressions for likelihood functions, in the third section an efficient Newton-like
algorithm is developed for maximizing the log-likelihood function on the surface
of the hypersphere. The proposed algorithm is a particular case of a Newton-like
algorithm for scalar functions on Stiefel manifolds (Absil et al. [1], Manton [9],
Balogh [2]). In the fourth section, some applications of the proposed algorithms
to real continuous and grouped datasets are presented. Finally, the conclusions
of the present work are presented in the fifth section.
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2. Likelihood functions

2.1. Continuous data

Let X1, X2, . . . , Xn be a random sample of univariate circular random variables
from a population with density function f(x;M, θ), which is a member of the
NNTS family with parameters M and θ. The density function of Xj is given by

f(xj ;M, θ) =
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which can be written in the following quadratic form:

f(xj ;M, θ) = θHeje
H
j θ = θHEjθ. (4)

Note that θ = (θ0, θ1, . . . , θM )T , ej = (1, e−ixj , e−2ixj , e−3ixj , . . . , e−Mixj )T ,

and θH indicate the Hermitian transpose of the vector θ that corresponds to
the transpose and conjugate of the vector of complex numbers θ, and θT is the
transpose of θ. Then, the likelihood for a random sample X1, . . . , Xn, denoted
by L(M, θ | x1, . . . , xn), is calculated as

L(M, θ | x1, . . . , xn) =

n
∏

k=1

θHeke
H
k θ =

n
∏

k=1

θHEkθ (5)

and the corresponding log-likelihood function is

l(M, θ | x1, . . . , xn) =

n
∑

k=1

ln(θHeke
H
k θ) =

n
∑

k=1

ln(θHEkθ). (6)

2.2. Grouped data

Let (aj , bj] for j = 1, . . . , Q be a partition of the interval (0, 2π], i.e., (0, 2π] =

∪Q
k=1(aj , bj ] and (aj , bj] ∩ (ak, bk] = ∅ for j 6= k, and let N1, N2, . . . , NQ be the

total number of observations in each of the intervals in the partition. Let Nk be
the total number of observations in the interval (ak, bk] for k = 1, . . . , Q. This
type of data is called grouped or incidence data. The likelihood function is

L(M, θ | N1, . . . , NQ) =

Q
∏

k=1

(F (bk;M, θ)− F (ak;M, θ))
Nk (7)

where F (bk;M, θ) is the accumulated distribution function of the NNTS density
at bk. Note that the accumulated distribution function is obtained as

F (bk;M, θ) =

∫ bk

0

f(x;M, θ)dx =

∫ bk

0

θHEθdx = θH

(

∫ bk

0

Edx

)

θ (8)
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where
(∫ bk

0
Edx

)

integrates each element of the matrix E. The elements of
matrix E are of the form eirx for r = −M,−M + 1, . . . , 0, . . . ,M − 1,M . The
value of the integral is equal to i

r
(1− eirbk) for r 6= 0 and equal to bk for r = 0.

The likelihood can again be expressed as a product of quadratic forms with
respect to θ.

3. The Newton-like algorithm

Because the θ parameter space corresponds to the surface of the hypersphere,
to obtain the maximum likelihood estimates, it is possible to apply a Newton-
like optimization algorithm on manifolds (Absil et al. [1]). Basically, a smooth
manifold is a surface that can be approximated locally by a hyperplane. For a
point on the manifold, the approximating hyperplane is known as the tangent
space. Then, a real function on a manifold can be maximized by searching for
optima in the directions of movement on the tangent space and reprojecting
onto the manifold. In differential geometry, the reprojection operation is called
a retraction. In this paper, the optimization problem of obtaining the maximum
likelihood estimates is equivalent to maximizing a real function (i.e., the log-
likelihood) on a manifold (that is, the surface of the hypersphere). The goal of
the Newton-like algorithm on manifolds is to obtain the solutions of

gradl(θ) = 0 (9)

where gradl(θ) represents the gradient of the log-likelihood function l at the
point θ. The solutions to this equation correspond to critical points of the real
function l on the surface of the hypersphere. The maximum likelihood estimate
of θ is a critical point of l. The Newton method on manifolds is an iterative
algorithm defined by the following steps, which are from Absil et al. [1]:

1. Select an initial point θ0.
2. For k = 1, 2, . . ., solve the Newton equation

Hessl(θk)ηk = −gradl(θk) (10)

for the unknown η
k
in the tangent space at θk.

3. Set θk+1 = Rθ
k
(η

k
) where Rθ

k
is the retraction from the tangent space

onto the manifold at θk.

The algorithm terminates when the norm of the gradient or the norm of the
difference gradl(θk)− gradl(θk−1) is less than a prespecified error. For the case
considered in this paper, we use differentiation rules of real functions of a com-
plex vector to derive

gradl(θ) = Pθ

(

∂l(θ)

∂θH

)H

=

(

1

2π
I − θθH

)

(

n
∑

k=1

θHeke
H
k

θHeke
H
k θ

)H

=
1

2π

n
∑

k=1

ek

θHek
− nθ (11)
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where Pθ is the projection onto the tangent space. For the case of the hyper-

sphere, Pθ = 1
2π I−θθH can be used. Note that the expected value of the gradient

is equal to zero, and the Hessian matrix is obtained as

Hessl(θ) = Pθ∆gradl(θ) = −Pθ

(

n
∑

k=1

eke
H
k

θHeke
H
k θ

)

. (12)

Fisher’s information matrix, ı, which corresponds to the negative of the expected
value of the Hessian, is equal to

ı = −E (Hessl(θ)) = nPθ. (13)

Instead of using the Hessian in the Newton algorithm, we prefer to use Fisher’s
information matrix in the same way as in Fisher’s method of scoring ([10], [8],
[12]). The modified Newton algorithm consists of the following steps:

1. Select an initial point θ0.
2. For k = 1, 2, . . ., solve the Fisher’s scoring equation

ıη
k
= gradl(θk) (14)

and because
ıη

k
= nPθηk = nη

k
(15)

and

gradl(θk) =
1

2π

n
∑

r=1

er

θHk er
− nθk, (16)

the Fisher’s scoring equation has the following solution for η
k
,

η
k
=

1

2πn

n
∑

r=1

er

θHk er
− θk. (17)

3. Set θk+1 = Rθ
k
(η

k
)

where Rθ
k
is a retraction from the tangent space onto the manifold for θk. In

particular, we use

Rθ
k
(η

k
) =

η
k
+ θk√

2π||η
k
+ θk||

. (18)

We terminate the algorithm when the difference ||θk+1 − θk|| is less than a
prespecified error.

The modifications required to apply the proposed algorithm to grouped data
is direct because the log-likelihood function to be maximized has the same basic
form as the one we treated above.

For the practical application of the algorithm, it is possible to work with
vectors θ with unit norms in order to avoid the correction terms related to
the factor 1

2π . This is facilitated by the fact that it is equivalent to a modified
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likelihood that is obtained by multiplying the original likelihood by a constant
factor. In relation to the initial point θ0, one can use a random initial point or the
normalized average of the ek statistics. In our experience, using the normalized
average of the ek statistics as an initial point has worked very well for different
datasets.

The proposed algorithm has been compared with results derived from sequen-
tial quadratic programming (SQP) and the Nelder-Mead optimization algorithm
in many different datasets; the proposed algorithm shows much faster conver-
gence for many different random initial points, and in contrast to SQP and the
Nelder-Mead algorithm, the proposed modified Newton algorithm usually con-
verges to the same point. The optimality properties of Newton algorithms on
manifolds and its convergence properties are presented in Absil et.al. [1], Man-
ton [9] and Balogh [2]. Of course, as in any iterative optimization algorithm,
it is important to run the algorithm many times using different initial random
points to try to find the global maximum of the log-likelihood function.

The proposed algorithm is implemented using the statistical software R, par-
ticularly CircNNTSR v1.0− 1 (see [6]).

4. Examples

The first example refers to univariate continuous circular data and consists of
the directions taken by 76 turtles after treatment. This data set is taken from
Fisher [7] (pp. 241), who in turn took it from Stephens [11]. The second example
consists of the accumulated monthly number of deaths by suicide in England
and Wales during the period 1982-1996 as an example of grouped data (Yip
et al. [13]).

4.1. Continuous data

Figure 1 presents the raw data histogram for the turtle data and the best-fitted
NNTS models. Table 1 presents the values of the log-likelihood, Akaike’s In-
formation Criterion (AIC), and the Bayesian Information Criterion (BIC) for
NNTS models for M = 0, 1, . . . , 10. This dataset was analyzed previously by
Fernández-Durán [4] using SQP to obtain the maximum likelihood estimates.
Contrary to SQP and the Nelder-Mead optimization method, the proposed
Newton-like algorithm presents much faster and more stable convergence prop-
erties.

4.2. Grouped data

Table 2 presents the raw monthly suicide data by sex taken from Yip et al. [13].
For grouped data, instead of using AIC or BIC criteria to select the best models
among the considered models that use M = 0, 1, . . . , 6, we apply likelihood ratio
tests to compare the maximized log-likelihood values for models with M =
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Fig 1. Turtle data: Histogram of raw data and the best AIC (dashed line, M = 4) and BIC
(solid line, M = 2) NNTS-fitted densities.

Table 1

Turtle data: Log-likelihood, AIC, and BIC values for the NNTS models fitted by the
proposed Newton-like algorithm on the surface of a hypersphere. An asterisk (*) marks the

best AIC and BIC models

NNTS model
M loglik (lM ) AIC BIC

0 −139.68 279.36 279.36
1 −122.33 256.66 261.32
2 −107.97 223.94 233.26*
3 −107.94 227.87 241.86
4 −103.96 223.92* 242.57
5 −103.33 226.66 249.97
6 −102.72 229.45 257.42
7 −102.49 232.98 265.61
8 −100.88 233.77 271.06
9 −100.50 237.00 278.95
10 −100.27 240.54 287.15

Table 2

Monthly suicides in England and Wales for the period 1982–1996 (Yip et al. [13])

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Female 1362 1244 1496 1452 1448 1376 1370 1301 1337 1351 1416 1226
Male 3755 3251 3777 3706 3717 3660 3669 3626 3481 3590 3605 3392
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Table 3

Suicide data: Log-likelihood and likelihood ratio test statistics values for the NNTS models
fitted by the proposed Newton-like algorithm on the surface of a hypersphere. An asterisk (*)

marks the most parsimonious models according to likelihood ratio tests using a 1%
significance level

Female Male
M loglik (lM ) −2(lM − lS) loglik (lM ) −2(lM − lS)

0 −40698.76 51.00 −107403.60 42.86
1 −40690.54 34.56 −107395.54 26.74
2 −40683.13 19.74* −107394.61 24.88
3 −40680.95 15.38 −107393.90 23.46
4 −40680.69 14.86 −107392.45 20.56
5 −40676.68 6.84 −107384.24 4.14 *
6 −40673.26 −107382.17

0, 1, . . . , 5, lM , with the maximized log-likelihood of the saturated model, lS ,
that corresponds, in this case, to an NNTS model with M = 6. In this strategy
for model selection, −2(lM − lS) is asymptotically distributed as a chi-squared
random variable with 12−2M degrees of freedom. The most parsimonious model
was selected. Table 3 presents the values of the log-likelihood and likelihood ratio
test statistics for NNTS models with M = 0, 1, . . . , 5. The selected models have
M = 2 for females and M = 5 for males.

5. Conclusions

A Newton-like algorithm on manifolds is developed to obtain the maximum
likelihood estimates of the parameters of the NNTS family of distributions. Be-
cause the parameter space corresponds to the surface of a hypersphere, other
optimization methods such as sequential quadratic programming (SQP) and
the Nelder-Mead algorithm must address norm constraints that make these op-
timization algorithms very slow. By working with optimization algorithms on
manifolds, it is possible to avoid the use of constraints, thus making the proposed
algorithm in this paper much faster and more efficient than these other meth-
ods. This is possible because the likelihood function of NNTS models can be
conveniently expressed in terms of quadratic forms of the relevant parameters.
The convenient use of the proposed Newton algorithm has been demonstrated
in several datasets consisting of continuous and grouped observations.
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