Open Access
2024 Spectral norm posterior contraction in Bayesian sparse spiked covariance matrix model
Fangzheng Xie
Author Affiliations +
Electron. J. Statist. 18(2): 5198-5257 (2024). DOI: 10.1214/24-EJS2326

Abstract

Posterior contraction rates with regard to non-intrinsic metrics have been a long-standing challenge in the Bayesian analysis of high-dimensional models. This paper establishes the minimax-optimal posterior contraction rates of the Bayesian sparse spiked covariance matrix model under the spectral norm, a non-intrinsic metric for the Gaussian covariance matrix model. Our proof technique relies on the recent advance in the geometric properties of Euclidean representation for subspaces and low-rank matrices, a local asymptotic normality argument, and the distributional approximation to the asymptotic posterior distribution of the sparse spiked covariance matrix.

Citation

Download Citation

Fangzheng Xie. "Spectral norm posterior contraction in Bayesian sparse spiked covariance matrix model." Electron. J. Statist. 18 (2) 5198 - 5257, 2024. https://doi.org/10.1214/24-EJS2326

Information

Received: 1 November 2023; Published: 2024
First available in Project Euclid: 13 December 2024

Digital Object Identifier: 10.1214/24-EJS2326

Subjects:
Primary: 62C10 , 62F15
Secondary: 62H25

Keywords: Cayley parameterization , non-intrinsic metric , posterior contraction , sparse spiked covariance matrix , spectral norm

Vol.18 • No. 2 • 2024
Back to Top