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1. Introduction
1.1. Background

Estimating covariance structures in the presence of high-dimensional variables
has attracted attention in the past decades. High-dimensional covariance ma-
trix estimation naturally connects to latent factor models [20, 26], principal
component analysis [44], graphical models [43], discriminant analysis [18], and
clustering analysis [12, 15, 49, 60], among others. It also finds applications in
a broad spectrum of real-world problems, including genomics [37], computer
vision [23, 33], and econometrics [17], to name a selected few. There has also
been substantial development in high-dimensional structured covariance/pre-
cision matrix estimation. Examples of structured covariance matrices include
spiked(low-rank) covariance matrices [7, 29, 31, 32], sparse covariance matrices
[10], and sparse precision matrices [19]. The readers are referred to the survey
paper [9] and the reference therein.

1.2. Main contribution

Consider the spiked covariance matrix estimation problem [8, 14, 30, 42] where
independent observations yi,...,y, are generated from N,(0,, ), where 0, is
the p-dimensional zero vector, €2 has the spiked form

Q=VAVT 11, 1)

V is a p x r matrix with orthonormal vectors, and A is a diagonal matrix with
diagonals being A\; > ... > A, > 0, and r < p. We focus on the case where the
leading eigenvector matrix V exhibits the row sparsity, namely, only s rows of
V are nonzero and s < p.

This work focuses on studying the rate-optimality of the posterior contraction
under the above sampling model with a certain hierarchical prior distribution
for the sparse spiked covariance matrix (1). Leveraging the Cayley parame-
terization in [28, 47] and the accompanying technical tools developed in [55],
we constructed a hierarchical prior model for (1), and obtain the minimax-
optimal posterior contraction rate in the spectral norm. This is a nontrivial
result and does not follow directly from the so-called prior-concentration-and-
testing framework pioneered by [24, 25] because the spectral norm is not an
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intrinsic metric (i.e., not equivalent to the Fisher information metric of the
Gaussian covariance model). It has been observed in [27] that the framework
of [24] does not apply directly to non-intrinsic metrics. Leveraging the non-
singularity of the Fréchet derivative (Jacobian matrix) of the Cayley parame-
terization studied in [55], we establish the local asymptotic normality under the
Gaussian spiked covariance model and derive the shape of the asymptotic pos-
terior distribution, which leads to the minimax-optimal posterior contraction
with regard to the spectral norm.

1.3. Related work

Due to the structural convenience, the spiked covariance model has been used
as a natural probabilistic model for principal component analysis (PCA). In the
high-dimensional regime where the model dimension p far exceeds the number
of samples n, the authors of [30] showed that the classical PCA might lead
to inconsistent estimators and certain structural assumptions are needed, e.g.,
sparse structures [8, 30] or effective rank constraints [31, 32]. Correspondingly,
the sparse structure of V motivates the development of sparse PCA methods.
For an incomplete list of works related to the sparse spiked covariance model
and sparse PCA, see [3, 5, 7, 8, 30, 34, 35, 52, 53, 59] and the reference therein.
In the case where p/n — + for some constant v € (0, 1], the authors of [14, 42]
studied the asymptotics of the sample eigenstructure. In [31, 32], the so-called
effective rank assumption is made, in the sense that (>, _; A\x +p)/(A1 + 1) =
o(n), which in turn requires that A; needs to diverge to oo sufficiently fast
(recall that Ay > ... > X\, > 0 are the eigenvalues in VAVT appearing in
model (1)).

When the parameter of interest is the principal subspace Span(V) (i.e., the
column space of V) and the eigenvalues of Q are bounded away from 0 and oo,
the authors of [53] established the minimax rate y/(rs + slogp)/n under the
so-called Frobenius sine-theta distance. Furthermore, the authors of [7] derived
the minimax rate /(slogp)/n for the principle subspace under the spectral
sine-theta distance. We defer the formal definitions of the sine-theta distances
to Section 2.1. The minimax rate with regard to the spectral sine-theta distance
is sharper than that with regard to the Frobenius sine-theta distance when
r > logp.

In contrast to the well-developed theory from the frequentist side, the lit-
erature regarding Bayesian approaches for sparse spiked covariance model is
slightly underexplored. In [41], the authors first studied the minimax-optimal
posterior contraction of  with sparse priors, assuming the rank r is bounded.
Under a more general assumption that the number of nonzero rows of V is
no greater than rs, the authors of [21] established the rate-optimal posterior
contraction of Bayesian sparse PCA under the Frobenius sine-theta distance.
Recently, the authors of [39, 56] focused on the posterior contraction rate under
the spectral norm, assuming that rlogn < logp. Under the same low-rank as-
sumption, in [38, 39], the author studied the contraction rate under the spectral
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norm for both the exact posterior distribution and the variational distribution
and proposed computationally efficient algorithms for Bayesian inference with
sparse priors. We remark that the assumption rlogn < logp greatly simplifies
the problem of posterior contraction in spectral norm since the minimax rate
v/ (slogp)/n under the spectral sine-theta distance coincides with the minimax
rate /(rs + slogp)/n under the Frobenius sine-theta distance. Namely, rate-
optimal posterior contraction under the Frobenius sin © distance directly im-
plies rate-optimal posterior contraction under the spectral sin © distance when
rlogn < logp. In this work, we are particularly interested in the posterior
contraction under the spectral sine-theta distance between principal subspaces
when r > logp, in which the phase transition phenomenon between the two
minimax rates occurs.

There have been several works in the literature that deal with the parame-
terization of subspaces in the Grassmannian using Euclidean vectors, including
[1, 2, 4, 16, 45, 54]. For example, in [1], the authors proposed the cross-section
mapping and derived the canonical metric. The cross-section mapping induces a
parameterization of subspaces that has also been discussed in [2, 4, 16, 45, 54].
In our Bayesian sparse spiked covariance matrix estimation context, these pa-
rameterization methods may lead to extra complications when sparsity needs
to be enforced over the rows of V, whereas it is easier to deal with sparsity via
the Cayley parameterization.

1.4. Organization

We provide the necessary notations and definitions about this work and briefly
review the necessary ingredients of Cayley parameterization of subspaces and
Euclidean representation of low-rank matrices in Section 2. Section 3 elaborates
on the prior specification for the sparse spiked covariance matrix model, estab-
lishes the spectral norm posterior contraction, and provides the proof sketch of
the main result. Additional discussion is provided in Section 4. The technical
proofs are deferred to Section 5.

2. Preliminaries
2.1. Notations and definitions

We use the symbol := to assign mathematical definitions of quantities. For
a,b € R, let a Ab:=min(a,b) and a V b := max(a,b). For a positive integer p,
let [p] := {1,...,p}. For two non-negative sequences (a,)5>; and (b,)5,, we
use the symbol a,, < b, or a, = O(b,) (an 2 by, resp.) to mean that a, < Cb,
(an, > Cby, resp.) for some constant C' > 0, and we use the notation a,, < b, to
indicate that a,, < b, and a,, > b,,. The notation AT denotes the Moore-Penrose
pseudoinverse of an arbitrary matrix A. For a general matrix A with p rows,
we define the support of A as supp(A) := {j € [p] : [A];« # 0}, where [A],.
denotes the jth row of A. We use C, Cy, C1,Cs, ¢, cg, 1, Ca, . .. to denote generic
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constants that may change from line to line unless otherwise stated. The r x r
identity matrix is denoted by I,., the p-dimensional zero vector is denoted by
0,, and 0,4 denotes the p x ¢ zero matrix. We reserve the symbol I(-) without
a subscript for the Fisher information matrix of a (regular) statistical model,
and it should not be confused with the identity matrix. A p x r Stiefel matrix
U (with r < n) is a p x r matrix satisfying UTU = I,. Given two positive
integers p,r, we denote by O(p,r) := {U € RP*" : UTU = I,.} the collection of
all p x r Stiefel matrices and write O(r) := O(r,r). For any U € O(p,r), we use
Span(U) to denote the r-dimensional subspace in RP spanned by the columns
of U. The collection of all r x r symmetric matrices is denoted by M(r), and the
collection of all  x r symmetric positive definite matrices is denoted by M (r).
For a matrix 3 € RP**P2 and indices ¢ € [p1],j € [p2], let [X];; denote the
element on the ith row and jth column of ¥, [¥];. denote the ith row of 32, and
[X];+ denote the jth column of 3. Furthermore, we use 01(X),. .., 0p, Ap, (X) to
denote the singular values of X sorted in the non-increasing order, i.e., o1(X) >
. > Opiapy (2). When X is a p X p symmetric square matrix, A;(X),..., A, (%)
denote the eigenvalues of ¥ sorted in the non-increasing order in magnitude,
namely, |A1(32)] > ... > |A\p(2)]. The spectral norm of a general matrix X,
denoted by ||X||2, is the largest singular value of ¥, and the Frobenius norm
of 3, denoted by [|Z||r, is defined to be [|[Z[lp := (312, Y202 [X]3)"/2. For a
Euclidean vector x = [z1,...,2,]T € RP, we denote [x]; := z;, ||x[]2 the usual
Euclidean norm ||x|[2 = (33, 2?)1/2, let By(x,¢) := {y € R? : ||y — x||2 < €},
and let diag(x) be the p x p diagonal matrix with x; being the element on its
ith row and ith column.

For a p; X ps matrix M, the operator vec(-) converts M to a p;ps-dimensional
Euclidean vector by stacking the columns of 3 consecutively, i.e.,

vec(M) = [M], [M]5s, ..., [M]p,] 1"
= [[M]117 R [M]Pll’ [M]l% ) [M];Dl?’ R [M]lpzﬁ SRR [M]MPQ]T'

The operator vech(-) transforms an r X r square symmetric matrix M to an
r(r + 1)/2-dimensional Euclidean vector by eliminating all its super-diagonal
elements, i.e.,

vech(M) = [[M]lly [M}217 ey [M}T'ly [M}227 ey [M}rz, ey [M]ma}T.

For any two positive integers p, g, we denote K, the pgx pg commutation matrix
such that vec(M™') = K, vec(M) for any M € RP*?, and denote D, the dupli-
cation matrix such that vec(M) = D,vech(M) for any symmetric M € RP*P.
We refer the readers to [36] for a review of the properties of the commutation
matrix Kp, and the duplication matrix D,. For two matrices A € RP*? and
B € R™*" we use A ® B to denote the Kronecker product of A and B, defined
to be the pm x gn matrix of the form

[A]11B [A]12B ... [A];,B
[A]21B  [A]22B ... [A],B
A®B:= . . .

[A];»lB [A];zB [A];)qB
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The distance between linear subspaces can be measured in terms of the canon-
ical angles, formally defined as follows. Given two Stiefel matrices U, Uy €
O(p,r), let 01(ULU) > ... > 0,(ULU) > 0 be the singular values of Ul U.
Note the singular values of Ul U are unitarily invariant and only depend on
Span(U) and Span(Ujy). The canonical angles between U, and U are defined
to be the diagonal entries of

O(Uy, U) := diag [cos " {o1(Ug U)},...,cos " {o,(UsU)}] € R™*".

Then, the spectral sine-theta distance and the Frobenius sine-theta distance
between two subspaces Span(Uy) and Span(U) are defined by || sin ©(Uy, U)||2
and || sin ©(Uy, U) ||, respectively.

2.2. Review of Cayley parameterization and Euclidean
representation of low-rank matrices

Cayley transform of subspaces [28, 47] and Euclidean representation of low-rank
matrices [55], which we briefly review here, are the key tools for us to derive
rate-optimal spectral norm posterior contraction in Bayesian sparse spiked co-
variance matrix model. We first provide the heuristics of Cayley parameteriza-
tion and Euclidean representation of low-rank matrices before diving into the
formal definitions. Let G(p, r) denote the Grassmannian, i.e., the collection of all
r-dimensional linear subspaces in R? equipped with the canonical metric (see
[1] for details). On a high level, Cayley parameterization constructs a diffeo-
morphism (a differentiable one-to-one function), denoted by ¢ +— Span{U(¢)},
between an open subset of R?®~")" and G(p, ), such that the intrinsic dimension
of G(p,r) can be fully captured by low-dimensional Euclidean vectors. Cayley
parameterization of subspaces further leads to the Euclidean representation of
low-rank matrices developed in [58]. A crucial result there is that the smallest
singular value of the Jacobian matrix of this Euclidean representation function
is strictly positive, implying the non-singularity of the Fisher information ma-
trix of the spiked covariance model under such an Euclidean representation. It
turns out that the non-singularity of the Fisher information matrix is the key
to our distributional approximation to the posterior distribution result, which
is of fundamental interest for obtaining the rate-optimal posterior contraction
of the principal subspace under the spectral sine-theta distance.

We now formally introduce the Cayley parameterization and the Euclidean
representation of low-rank matrices. Suppose S C RP? is an r-dimensional linear
subspace in the p-dimensional Euclidean space. In [28], the authors show that,
with respect to the uniform probability distribution over G(p,r), almost every
r-dimensional subspace in RP can be represented as the column span of a unique
orthonormal matrix U € Q4 (p,r), where

O4(p,r) :={U=[Q) Q" €0(p,7) : Q1 € M4(r)}.

Let A € RP=*" with ||Alls < 1, and let ¢ := vec(A). Then, the Cayley
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parameterization [28, 47] is defined as the function
U:peRPI" U(p) = (I, + Xo)(I, — Xso)_llpxr € 04 (p,7), (2)
where

AT
XLP = |:OT><T A

I
, and I, := " . 3
A 0<p—r>x(p—r>} P { } )

0(p—r)xr
Equivalently, U(¢) can be written in the following block form:

o-[8]- [t

In [28], the authors show that the Cayley parameterization U(-) has the following
two properties: It is a bijective function onto Q4 with inverse given by U(p) —
vec{Qz2(I, + Q1) 1}, and it is a differentiable function whose Fréchet derivative
is

DU(p) = 2[L, (I, = X) 7" @ (I, = X)L, (4)

pXT

where Ty, := (I,2 — K,,)(©T @ ©1), ©; := ngm and O3 := [0(,—y)xr, Ip—r].
Leveraging the Cayley parameterization of subspaces, the author of [55] es-
tablishes a Euclidean representation framework for symmetric low-rank matrices
as follows. Specifically, let p := vech(M) and denote by M(u) := M the in-
verse of the function M +— vech(M). Then, with 0 := [T, u*]T, the Euclidean

representation of low-rank matrices is defined as the following function
() 2(p.r) = L(pr), 0+ Ulg)M(p)U(p)", ()

where
@(p’r) — {0 _ |:V€CISA):| c R(pfr)r ~ Rr(r+1)/2 . HA||2 < 1} 7 (6)
S(p,r) :={Z=UMUT: U €O, (p,r),M € M(r)}. (7)

Conversely, for any symmetric positive semidefinite matrix 3 € RP*P with
rank(X) = r < p, it yields spectral decomposition ¥ = VAV?T where V €
O(p,r) and A = diag(A1, ..., Ar) with Ay > ... > A\, > 0. Then, for almost every
Span(V) € G(p,r), there exists U € Q4 (p,r) such that Span(V) = Span(U),
which entails that ¥ = UMUT for some 7 x r symmetric positive definite ma-
trix M. By the one-to-one property of U(-), there exists a unique A € R(P=r)xr
lA]l2 < 1, such that U = U(y), where ¢ = vec(A). This shows that almost
every p X p rank-r matrix is in the range of X(-), which is the collection of
low-rank matrices . (p,r) defined in (7).

In [55], the author shows that the function X(-) is also differentiable with the
Fréchet derivative D3(0) = [D,3(0), D,,X(0)], where

Dp%(0) == (I + Kpp) {U(p)M(u) @ 1,} DU (),

D,2(0) = {U(g) ® U(g)}D,. ®)
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where DU(¢p) is defined in (4). In what follows, ¥ plays the role of the low-rank
component VAVT in the spiked covariance model (1). For Xy being the true
value of 3, we denote by 8y := [pd, ud]T be the vector such that ¥g := £(6) =
U(p0)M(10)U(go)", in which case we let Uy := U(pg) and Mg := M(puo).
The key technical result in [55] is the following lower bound on the smallest
singular value of the Fréchet derivative matrix D, 3(-).

Theorem 2.1. Under the above setup, if r > 2, then

220, (Mo)(1 — [[Aoll3)

(1+[|Aol13)? ’
(1464 Mo|13)(1 + [[Aoll3)*

SAZ(Mo)(1 - [[Aoll3)®

Remark 1. Theorem 2.1 above guarantees that the Fisher information matrix
of the spiked covariance model (1) is non-degenerate. Formally, let € (p) be a
collection of p x p symmetric positive definite matrices and P := {pa(y) : Q €
€ (p)}, where po(x) = det(27r.ﬂ)_1/26_(1/2)’&971" denotes the density func-
tion of Ny(0,, ). Denote by £ao(x;) := Vyen(n) log pa(x;) the score function
with regard to vech(2), and I(Q2) := Elq(x)€qn(x)T the corresponding Fisher
information matrix. It can be shown that (see, e.g., Chapter 10 in [36])

Omin{DpX(00)} >

I{DX(80)" DS (60)} M2 < 1+

1
I(Q0) = §Dg(961 ® 051Dy
However, if one instead restricts £ to the spiked matrix class
Cp,r) ={:=X+1,: X . S(p,r)}

and assumes ¢ = 3¢ + I, for some ¥y € .#(p,r), then the spiked matrix Q
can be represented by a lower dimensional Euclidean vector 8 € Z(p,r). Thus,
the statistical submodel under the #-parameterization can be written as

Z(p,r) = {pae) () : 2(8) = %(6) + 1,,,6 € Z(p,)}-

Denote by 6y € Z(p,r) the vector such that Qy = X(0y) + I,. By the chain
rule, the Fisher information matrix with respect to the @-parameterization in
the submodel % (p, r) evaluated at @ = 6y is given by

1(6y) = DX(6o)" (D]) D) ¥ (0)D, DI DX (6y).

Using the fact that D,Df = (1/2)(L2 +Kpp), (DpD]) (L2 +Kpp)? = (L2 +Kpp),
and DD (Ug ® Up)D, = (Ug ® Ug)D, (see, e.g., Chapter 4 in [36]), we further
conclude that

I(60) = (60) = 5 DS(0)" (25" © 92511 DS ().

Hence, by Theorem 2.1, the Fisher information matrix I(6y) with respect to
the @-parameterization in the submodel % (p,r) is also non-degenerate. This
observation will be indispensable in investigating the spectral norm posterior
contraction in the Bayesian sparse spiked covariance model in Section 3 below.
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2.3. Review of minimax rates for sparse spiked covariance matrices

In this subsection, we take a moment to formally review the minimax estimation
results for Span(V) established in [7, 53] before diving into the proposed hierar-
chical Bayesian model and the posterior contraction results. In [53], the authors
showed that, when A\.(£2) — A,11(€2) is bounded away from 0 and V € O(p, )
is the eigenvector matrix of €2 corresponding to A1 (£2),. .., A-(€2), the minimax
rate for estimating Span(V) under the Frobenius sine-theta distance is given by

- 1
inf sup Ev{||sin O(V, V)||2} = [T 5108P,
V VeO(p,r),|supp(V)|<s n

(9)

Here, infg denotes the infimum over all possible estimators \Ys (measurable func-
tions of y1,...,¥5). In [7], the authors further showed that the minimax rate
for estimating Span(V) under the spectral sine-theta distance is given by

~ I
inf  sup  Eqf{|sinO(V,V)|3} =< 8L (10)

V QeO(s,p,m,A,T) n

where

Oo(s,p, A\, 1) :={Q = VAVT + I,: VeO(p,r),|supp(V)| < s,
AT <A (A) <A (A) <AL

and A, 7 are bounded away from 0 and oo. Note that the minimax rate (9) under
the Frobenius sine-theta distance has an extra term 4/rs/n compared to (10)
when r > logp. Below, we will design a hierarchical prior model for €2 by
leveraging the Cayley parameterization and show that the posterior contraction
rate with regard to the spectral sine-theta distance is exactly /(slogp)/n.

3. Bayesian sparse spiked covariance model
3.1. Prior specification

Recall that in the spiked covariance model (1), the leading eigenvector matrix
V can only be identified up to an orthogonal matrix in @(r) in the presence of
eigenvalue multiplicity. Because, for any covariance matrix € of the form (1),
there exists some permutation matrix IT such that I}, (IIV) is non-singular,
and the leading eigenvector matrix of IIQITT is exactly ITV. Therefore, without
loss of generality, we assume that IEXTV is invertible. By the construction in

Section 2.2, Q can be written as Q = 3 + I, for some ¥ € #(p,r), and there
exist some U € Q4 (p,r) and M € M, (r), such that

Q=%+1,=UMU" +1,.

We follow the setup and notations in Section 2.2. Since ¥ can be param-
eterized by a Euclidean vector 8 = [T, u™]T € P(p,r) through the map
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() : 2(p,r) = SL(p,7),0 — X(0), we then use Q(:) to generically de-
note the induced map 6 — Q(0) := %(0) + I,. Furthermore, let € de-
note the true value of the covariance €2 corresponding to the distribution of
Yi,---,¥Yn, 80 € Z(p,r) be the inverse image of Q¢ under the map €(-), and
Yo = X(0p). Let ¢, pp € R®=")7 he vectors and A, Ay € R®~")X" be matri-
ces such that ¢ = vec(A), o = vec(Ayp), where ||Allz < 1, ||Aolz < 1, and
let M, My € M, (r) be positive definite matrices such that g = vech(M) and
o = vech(My), respectively.

The advantage of the Cayley parameterization is that the row sparsity of
U(p) can be directly incorporated into the rows of A. By the construction of
the Cayley parameterization, U(¢p) can be written as

(@, —ATA)T, + ATA)!
U(‘P) - 2A(IT + ATA)_l

It follows that [U(ep)];» = 0 if and only if [A];_,). for any j € [p]\{r}. Fur-
thermore, U(¢p) is subject to the orthonormal constraint U()TU(p) = I,,
whereas working with A is more convenient. Hence, we consider the following
sparsity-inducing prior distribution on A. We assume throughout that the rank
r of the spiked component is known. When r is unknown, our theory developed
in this work can be applied by replacing r with a consistent estimator 7 (i.e.,
lim;,_, o Po (7 = r) = 1). Such a consistent estimator can be obtained, e.g., using
the approach proposed in [7]. Let m, be the density of a discrete distribution
supported on {0,1,2,...,p —r} of the form
1 —rt —at
ﬂ—p(t):_n (p_{r) ) t:0""7p_r (11)

Zn

for some constants a,c > 0, where

5 L\ _1={n(p-r)
o ';{W'(p—f)“} - l-am(p-r)e

is the normalizing constant. Based on 7, a subset S C [p — r| representing the
support of A is drawn from the following distribution:

(151
ms(9S) == (ppfr) , SClp—r], (12)
|1
where |S| denotes the cardinality of a finite set S. Given S = {j1,j2,...,J)5} C
[p — 7], suppose S¢ := [p — 7]\S can be written as S¢ = {ki, k2,...,kjs|} and
denote by
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[i]kll (Al 2 (Al
Age ].kzl [A]:/w? [A].kzr
Al Al - Al

We then define the prior distribution of A by

Ta(dA) = > 75(5) {ras(As)dAs} {00, (dAse)},
SClp—r]
e (AsyiAg o SPL2IeelA) 1 1(JAs]> < DA 1)

Jiasaer ex(—2[vec(As)[1)dAs

The prior distribution on the entire covariance matrix €2 through 0 is completed
by assigning the following prior distribution to M, which is independent of
ITA(dA):

Tu(p) oc exp (=2[|pfl1) {M(p) € My (r)}. (14)

Then the joint prior distribution on @ = [™, uT]T = [vec(A)T, uT|T € 2(p,r)
is defined as the product of the sparsity inducing prior (13) on A and the prior
distribution (14) on u:

Hg(de) = HA(dA)F”(u)du. (15)

Denote by Y, := [y1,...,¥n] € RP*™ the data matrix concatenated by y1,...,yn
and n N~
() = -3 log det(27Q2) — 5tr(mrl)

the log-likelihood function of €2, where Q := (1/n) > i yiyr. We assume the

high-dimensionality setup p/n — oo so that the sample covariance matrix Qis
no longer invertible. Then, the posterior distribution of interest given the data
matrix Y,, can be written using the Bayes formula:

_ L exp{l(R(0)) — £(520)}TIg (d0)
[ exp{£(2(8)) — £(52)} 1o (d6)
)

where A is any measurable subset of Z(p,r).

Me(0 € A|Y,)

3.2. Rate-optimal posterior contraction in spectral norm

The main result of this section is Theorem 3.1 below. It asserts that the pos-
terior contraction rate under | sin ©{U(¢), Up}||2 is minimax optimal under
additional necessary conditions, which we present below first:

A1l (Minimum row support) s := [supp(Uyp)| > 2r.
A2 (Regularity) sup, || Aoll2 < 1.
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A3 (Bounded spectra) There exists some constants A\, A > 0 such that
A < A (M) < Ai(Mg) < A

A4 (Fast convergence rate) (r?s?logn + rs?logp)3/n — 0.
A5 (Minimum row signal strength) The non-zero rows of A satisfy

- mingcppan Aol
n—oo \/(rslogn + slogp)/n

Remark 2. Some remarks regarding conditions A1-A5 are in order. Conditions
A1l and A3 are standard conditions for sparse spiked covariance model (see, for
example, condition 2 in [53] for Al and the parameter space in [21] for A3).
Condition A2 requires that the spectral norm of Ay is bounded away from
1. In [55], the author shows that, locally around Uy, the Frobenius sine-theta
distance between U and Uy is equivalent to the Frobenius norm ||[U — Uy||p,
and hence, ||¢ — @ol|2, up to a constant factor. Furthermore, Theorem 2.1 and
Remark 1 indicate that the Fisher information matrix with regard to the 6-
parameterization evaluated at 8 = 6, given by

(00) = 5 D3(60) (9" © 951D (60) (16)

is asymptotically non-singular, i.e., ||[I(8p)~!||2 is bounded away from oo when
n — oo.

Condition A4 claims that the posterior contraction rate with regard to || —
60|71 is sufficiently fast. Furthermore, roughly speaking, using the Fréchet deriva-
tive formula D33(-), we are able to derive a local asymptotic normality expansion
of the log-likelihood function ¢(€2(0)) as follows:

((S2(8) — £(0) = Fvec(t — 20) (2" © 25 1) DE(60) (6 — 60) -
1
- g(e —0)"1(8,)(6 — 65) + Rn(6.6,),

where condition A4 guarantees that remainder R,, is negligible.

Condition A5 requires that the minimum of the Euclidean norms of the non-
zero rows of Ay cannot be too small. It is similar to the so-called S-min condition
in the sparse linear regression model (see, e.g., 6). In [34], a similar condition is
also required for the exact recovery of supp(Uy) (¢.e., the notion of sparsistency)
using the Fantope projection and selection method.

It is quite clear that condition A3 can be satisfied by a broad collection of
positive definite matrices. Below, we provide a class of examples of A satisfying
conditions Al, A2, A4, and A5.

Example. Let 71,72 > 0 be constants such that s = 2r = O(n"), logp =
O(n"?), and they satisfy 12y < 1, 9y1 + 3v2 < 1. These constraints guarantee
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that condition A4 holds. Let ay,, 3, > 0 be n-dependent quantities with a2 +
8% =1, and sup,,», B, < 1. Consider

To7oy

U=« diag(I.,,P) | B5.Ho : P is a permutation matrix, Hy € O(r)
0(p—21‘)><7‘

Clearly, any Uy € U satisfies condition Al. Now let

ﬂn HO ]

Ay = P
0 on +1 |:0(p—2r)><r

where P is a (p — r) X (p — r) permutation matrix and Hy € O(r). Clearly,
sup,,>1 |[Aoll2 < sup,,>1 Bn < 1, so that condition A2 holds. A simple algebra
shows that -
anl,
U(vec(Ay)) = diag(I,,P) | B.Ho | €U.
0(p—27‘)><r

Finally, because (rslogn + slogp)/n = o(1) and

n 1-— 72L
On By = YO

Bn+1

min Agills = min
Jj€supp(Ag) IFAo;1l2 J=l.rap +1

is bounded away from 0, condition A5 holds automatically.

Theorem 3.1. Assume the setup and the prior specification in Section 3.1
and suppose conditions A1-A5 hold. There exists some large constant M > 0
independent of r,s,p,n, such that

. slo
Eollg {II sin ©(U(¢), Uo)|l2 > M ngp

v }<\/(r25210gn+7’5210gp)3
n ~ .
n

Yn} “o

Theorem 3.1 is a non-trivial result. It relies on the asymptotic characteriza-
tion of the shape of the posterior distribution IIg(d@ | Y,,), which is summarized
in Theorem 3.2 below.

In particular,

1
lim Eollg {|| sin ©(U (), Up)|l2 > My/ > (:Lgp

Theorem 3.2. Assume the setup and the prior specification in Section 3.1 and
suppose conditions A1-Ab5 hold. For any index set

SeSy:={SClp—r]:supp(Ag) C S,|S| < ko(s—1)},

let Fg be the matriz such that

0s = [VECS&S)} =FL0 for any vector = [veclSA)] .
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Furthermore, define the following quantities:
I5(60) := FtI(60)Fs,
05 := Bos + (1/2)Ls(0p) ' FEDE(8;) " vec{ Q5™ (€2 — Q0); ',

97Ls(80)~" /n|!/? NGTI
W o mp(|S])[27L5(80) " /|2 exp{(n/2)85Ts(80)Bs} sty s =1,
(1s1) Jiasia<ry exp(=2lvec(As)ll)dAs &

where 1(0y) is defined in (16). Let 1Ig°(0 € - | Y,,) be the following random
mizture of normals

g°(d6 | Y,) i= Y @s{(0s | Bs,1s(60) ™" /n)dBsHdo . . (d0sc)}, (18)
SEeSy

Here, ¢(x | u, Q) := det(?wﬂ)’1/26*("’“)TQ_1("*“)/2 and Ogc = vec(Age).
Then there exists some constant ko > 1 such that

2s2logn + rs?logp)?
- .

g
Eallo 0 €| Y,) ~ T30 €| ¥, )loy <4

Remark 3. By Theorem 2.1 and Remark 1, the Fisher information matrix I(6)
is strictly positive definite, implying that the submatrix Ig(6y) := FLI(6y)Fg
is also strictly positive definite. Hence, leveraging the intrinsic perturbation
tools developed in [55] and Theorem 3.2, we can further study the behavior of
|Isin®{U(e), Up}||2 under the posterior distribution Ilg(@ € - | Y,) through
the behavior of @ — 6y under the limiting distribution IIg°(@ € - | Y,,). Theo-
rem 3.2 may be of independent interest as well.

3.3. Proof sketch

We now discuss the proof sketch for Section 3.2, namely, Theorem 3.1. The proof
is lengthy and is partitioned into several subsections. The sketch of the proof
can be loosely summarized as the following steps:

1. Prior concentration (Section 5.1). We provide a lower bound for the prior
probability that €2(8) is inside a small neighborhood of Qy, i.e.,

He{||2(8) — Qollr < 10},

where (1,)%2; is a sequence converging to 0.
2. Posterior sparsity (Section 5.2). We prove that with posterior probability
going to 1, the intrinsic dimension cannot be too large, namely,

lim E0H9(0 : |SA| < KoS | Yn) =0
n— 00

for some constant kg > 0.
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3. Construction of certain test functions (Section 5.3). This step is needed to
obtain the rate-optimal posterior contraction under the Frobenius norm
following the general framework of [25].

4. Posterior contraction under the Frobenius norm (Section 5.4). This is im-
mediate once the previous steps are completed but also serves as an inter-
mediate step to the posterior contraction under the spectral norm.

5. Local asymptotic normality (Section 5.5). We expand the log-likelihood
function locally at 6y under the posterior sparsity restriction via a Taylor
expansion argument, which can be viewed as a variant of the local asymp-
totic normality (see, e.g., Chapter 7 in [50]). The neighborhood radius of
the local asymptotic normality is determined by the posterior contraction
rate under the Frobenius norm established in Section 5.4.

6. Distributional approximation (Section 5.6). Leveraging the local asymp-
totic normality result established in Section 5.5, we prove Theorem 3.2,
i.e., the asymptotic characterization of the shape of the posterior distri-
bution (0 € - | Y,) using a random mixture of normal distributions.

7. Posterior contraction under the spectral norm (Section 5.7). Finally, we
prove the rate-optimal posterior contraction of Span(U) under the spec-
tral sine-theta distance using the asymptotic distributional approximation
result obtained in Theorem 3.2.

We now briefly explain the purposes of the above technical steps. As mentioned
earlier, the key technical result is Theorem 3.2. In steps 1-4, we follow the clas-
sical prior-concentration-and-testing framework established in [24, 25] to obtain
the posterior contraction rate under the Frobenius norm. Such a preliminary
convergence result is necessary because it enables us to obtain the local asymp-
totic normality (step 5) in a shrinking neighborhood of 6y corresponding to the
Frobenius norm contraction rate. The local asymptotic normality established
via step 5 is also of fundamental interest for step 6, which completes the proof
of Theorem 3.2. Finally, our main spectral norm posterior contraction result in
Theorem 3.1 is obtained from Theorem 3.2 using a discretization trick.

3.4. The challenge with the testing approach

We briefly sketch the argument for why minimax-optimal posterior contrac-
tion under the spectral sine-theta distance is challenging in the current sparse
spiked covariance model context if one follows the prior-concentration-and-
testing framework pioneered by [24, 25]. Let 6y = [pl, ud]T € 2(p,r). The
key step there is the construction of a test function ¥,, for testing Hy : @ = 6,

versus H, : ||sin ©(U(p), U(po)ll2 > M+/(slogp)/n, such that

lim Ep, ¥, = 0, sup Eo(1—W,) S e ",
nree 0:|sin ©(U (), U(0)||2>M /(s log p) /n
(19)

where 1, = \/(rslogn + slogp)/n corresponds to the contraction rate under
the Frobenius norm loss (intrinsic metric), and ¢ > 0 is a constant that cannot
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be easily controlled. See, for example, Equation (5.6) in [27] for a detailed deriva-
tion. Now let 81 = [T, ud]T € 2(p,r) be such that || sin ©(U(p1), U(wo))|lr =
2M+/(slogp)/n, Q1 = Q(67), and consider the likelihood ratio test

Yoy = T{(R) — U(S0) > Vi, |27 *(21 — Qo) Jr
+ntr(I, — Q7' Q) }

such that Eg, V¥, = Eg,1n,e,, where u,, — oo in order to obtain a vanishing
type-I error probability. Because €2y and €2; have the same set of eigenvalues,
it is clear that || — Q|lr > CM+/(slogp)/n by Davis-Kahan theorem, where
C > 0 is a constant. Note that £(Q) — £(Q0) = (1/2) 0, yF (2" — Q1 Dy:

since det(25 ') = det(Q7!). Then by Neyman-Pearson lemma,

Egl(l - \I]n)
> Eq, (1 —vYn0,)

= Pel{ doyi(@ -9y —ntr(Q5'Q - 1) <
=1
Vi Q72 — Q)92 ||p + ntr(20, — Q510 — Q;lno)}.

In order to obtain a consistent likelihood ratio test, the right-hand side of the
above inequality needs to be lower bounded by

P, { S oyit - 9 Yy — ntr(Q,12 - L) < —c’slogp} = O(e~¢"slosP)
=1

by Hanson-Wright inequality [46], where ¢/, ¢” are constants that cannot be
well controlled. Since slogp = o(nn?) in situations where logp = o(rlogn), we
conjecture that it is impossible to construct a test function satisfying (19). For a
more thorough discussion on the testing approach and the posterior contraction
rates under non-intrinsic metrics in more general contexts, see Section 5.3 of

[27].

4. Discussion

In this paper, we leverage the techniques of Cayley parameterization of sub-
spaces from [28, 47] and Euclidean representation of low-rank matrices from
[55] to address the spectral norm posterior contraction rate in Bayesian sparse
spiked covariance matrix estimation problem. The non-trivial part of this issue is
that the spectral norm is not equivalent to the intrinsic Fisher information met-
ric on the statistical manifold of the Gaussian spiked covariance model, which
prevents us from using the so-called “master theorems” established in [24, 25]
to derive the associated posterior contraction rate. See [27] for a discussion on
the posterior contraction rates with regard to non-intrinsic metrics. Our proof
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technique relies on a complete characterization of the shape of the posterior
distribution through a non-trivial local asymptotic normality argument as well
as the recent advance in the singular values of the Fréchet derivative of Cayley
parameterization due to [55].

There are several potential extensions of this work. Our conditions (condi-
tions A2, A4, and Ab) are slightly stronger than those required in the frequen-
tist minimax-optimal estimator literature [7], and it is currently unclear whether
these conditions can be relaxed following the framework established in this work.
We conjecture that new techniques may be required to relax these conditions.
The computation strategy for the posterior distribution derived in this work
is a non-trivial task due to both the high-dimensional nature of the problem
and the lack of a closed-form Gibbs sampler associated with the spike-and-slab
prior specification through the Cayley parameterization. A plausible computa-
tion strategy is to leverage the proximal mapping technique developed in [57, 58]
together with the tools from Hamiltonian Monte Carlo. Specifically, the main
idea in [57, 58] is to construct an auxiliary variable 8 with an absolutely contin-
uous prior distribution 7g, such that the induced prior distribution defined by
the proximal mapping ¢ = argmin, <¢ 8 — 9|2 has the same prior distri-
bution as the sparsity-inducing prior (13), where the hyperparameter ¢ is also
assigned an appropriate hyperprior. The mechanism of the sparsity-inducing ef-
fect of the proximal mapping resembles the shrinkage effect of LASSO [48]. By
doing so, the authors of [57, 58] argued that the posterior computation for ¢
can be implemented tractably by sampling 8 using Hamiltonian Monte Carlo.
Finally, we currently assume that the rank r of the spiked component of the
true covariance matrix is either known or estimated using a consistent estima-
tor (e.g., [7]). Tt is also possible to relax this assumption by first assigning a
prior distribution for r that is supported on {1,..., 7 max}, where rpa.x > 0is a
conservative upper bound for r, and then construct the entire hierarchical prior
distribution by treating (11)-(15) as the conditional prior distribution of the
remaining parameters given r. This may require a nontrivial extension of the
distributional approximation result in Theorem 3.2 because it is unclear how to
formulate the local asymptotic normality with a varying dimensional parameter
space. We defer these research directions to future work.

5. Proofs of the main results
Denote by Sp := supp(Ay), so := |So]|, and
A8 i= [ exp(-2vec(As)1)dAs.
lAsll2<1
We begin the proof with the following upper and lower bounds for (]S|):
WS < [ exp(-2vec(As)lh)dAs = 1. (20)
R Xr

(180) 2 exp { ~5risog(risl) - 2~ og2rls| b, ISz (21



Spectral norm contraction in spiked covariance matriz 5215

where the lower bound can be derived as follows:
WsH= [ exp(-2vec(As)1)dAs
lAs|r<1

>

/ exp(—2||vec(Ag)||1)dAs
[[vec(As)|loe <(r|S|)—1/2

/(T|S|)1/2 ey IS N { 9e—2 }TS'|
= e x >
—(r|s])-1/2 (r|S])1/2

1
= exp {—§T|S| log(r|S]) — (2 — log 2)T|S} .

Also, observe that for sufficiently large n, z, € [1/2,2].

5.1. Prior concentration

This subsection focuses on proving the following lemma that describes the prior
concentration behavior of Ig(+):

Lemma 5.1. Assume the prior specification in Section 3.1 and conditions
A1-A5 hold. If (n,)5%, is a sequence such that 1,/||Qoll2 — 0 and nn2 — oo,
then

I {]|2(8) — Qollr < nn} > exp (—Corsologn — Csglogp)

for some constant Cy = C(||%p]|2) > 0 that only depends on ||Qoll2, and some
absolute constant C > 0.

Before proving Lemma 5.1, we need the following auxiliary lemma from [41].

Lemma 5.2 (Lemma C.1 in the Supplement of [56]). Let (n,,)22, be a sequence

converging to 0 with nn2 — oo. Then there exist a constant ¢ > 0 and a sequence

of events (2,)°%, with Po(Z,,) < 2exp(—cnn?/||0]|3) such that over the event
Dy = exp {—Cri? 1og(20]12)} TTo 16 : 1946) — Dol < 1m0}

where D,, := [ exp{{(£2(0)) — £(20) }[1o(d0).

Proof of Lemma 5.1. Let g := vec(Ag) = U~1(Up) be such that U(py) =

Uy, where U(¢p) is the Cayley transform of ¢ € R?, g is the vector formed by

taking the upper diagonal entries of My, and g := [p, ud]T. By Theorem 2.1
in [55], for any ¢ € Ba(¢po, €) with sufficiently small € > 0,

IU(#) = Uollr < 2/1DU(go)ll2lle — woll2 < 4v2[le — poll2-

Therefore, for ¢ € Ba(wo,1n/[32]|Q0]|2]) and g € Ba(po, 1, /8) with sufficiently
large n, we have
"n

| oll2 < llee = eollz + 1 = rollz 32(|20][2 Ty sy
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and then, for sufficiently large n, we obtain
1€2(6) — ollr = [2(8) — Zo||r
< 2|Moll2|[U(e) — Ugllr + [[M — My||r
+2|M — My |[r[U(p) — Uollr + [|Moll2[[U(¢) — Uolli
< 8vV2||ll2lle — oll2 + V2|l — poll2 + 32(10 — 6|3

+ [1Q0]|2/|U(¢) — Uo7
< 16[|Q0]|2/|A — Aoll2 + 2[| — poll2 < 1n-

Now we can estimate the prior mass Ig{||2(0) — Q||lr < 7} from below:

TIn
o {1920) ~ Qolle < ma} > My (s~ proll2 < )

Nn
Ta (A= Agflp < — 1),
oA (” olle 32||90||2>

where TI,,(dp) = 7y, (p)dp. Denote I1% (dp) the Laplace distribution on g by
Iy (dp) i= exp(=2l|pll)dp,  pe RTOTD2,

Clearly, II,,(dp) is the normalized restriction of II};(dp) on M(p) € M (r),
where p = vech{M(p)}. Now let g € Ba(pto,1,/8). Then for sufficiently large

n,
V21,
)

Since My is already strictly positive definite with A,.(IMy) bounded away from
0, it follows that M(u) is also positive definite. Now we proceed to provide a
lower bound the first factor as follows for sufficiently large n:

Tin H;LL{HH/ - “0”2 < 7’71/87M(u’) € M+(T’)}
I, <||M — poll2 < g) = L {M(p) € M4 (r)}
_ TGl — poll2 <m0 /8)
I {M(p) € M (r)}

Mn
> 115 (|l = olla < )

— 0.

IM(p) — M(po)|lr < V2|t — poll2 <

8
2 o {5 (1))
‘ exp{2 max  (lmolls + ||uuo||1>}
[[p—poll2<1

n r(r+1)/2
> vol {BZ (Or(7'+1)/27 1)} (%)

xexp{—z T(T+1)(Iluollz+1)}

2
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> 1 < V2men, )T(TH)/Q
T mr(r+1)/2 \8y/r(r+1)/2
x exp (—2r||Mp||r)

> exp (—Cr2 ‘log In
r

= 2%/ 92]l2)

> exp (—C’rs ‘1og In
r

— 2rs]|20])2 ) -

We now focus on the first factor. Note that for any row index j € [p], j > r,
[Uolj« = 0, if and only if [A(Uo)]j—r)s« = 0,. Given S drawn from 75(5),
denote IT§ _(dAg) the Laplace distribution on vec(Ag), i.e.,

Hgs (dAg) := exp(—2|vec(Ag)|1)dAs.

Clearly, I1a, is the normalized restriction of His on {Ag € RIS ||Agll2 <
1}. Furthermore, given S = Sy drawn from wg(S), for any Ag, € {||As, —
Aps, llr < mn/(32]|2]12)} with n, — 0, we have

1Asoll2 < [l Aosyll2 + [[As, — Aosylle < sup [[Aollz +o(1) < 1.
n>1
This implies that

{Asg sy — Aosy[lr < } C {As: [As 2 < 1.

T
32(|€20]I2

Then for sufficiently large n, we provide the following lower bound the first
factor by restricting S to be Sy:

Mn
11 A— A L
A (' olle < 32||Qo|2)

n
> s(S0)TTas, (1As, — Aasy e < o)
T4, {1As, — Aosy e < 10/ (32]Q00), | As, 1 < 1}

= II5(S,
(%) 5. (As, [As,ls <1

"
> Ms(So)1Z, (HASO — Aps, |lr < m)

ﬂ-p(SO)VO Tn sor
(") HB2(0s0r, 1)) (32”90”2)

X exp {—2 max ([[vec(Aosy )|l + [[vec(As, — A050)|1}
[As,—Aosyllr<1

mp(s0) 1 V2meny, o
-2/ A 1
() 2vmor (o) o0 -2V (ole-+ )

mp(so) 1 V2meny, sor 4 5
=) 2 /sorm \ 32 Qoll2av/mor ) T sor
( o ) 0 oll2v/80

v
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mp(s0) "n
> p_r exp {Csor _
") [€20]|2+/S07

Since for sufficiently large n, 2z, > 1/2 and

log

— 4507"} .

2
TS0 (p _ T)_as(J 50 0 > ln—TSU (p _ T)—aso (p _ 7“)_280
p—r -2

exp(—rsg logn — c¢sg logp)

for some constant ¢ > 0, it follows that
Ui
1ION (”A — AOHF < —)

> exp {—Crso log

Ui
————— | — C(rsglogn + sglo p}.
||QO||2 /_807“ ( 0 log 0 g)

Hence, using the fact that nn? — oo, we conclude that
Mo {[|2(0) — Qol[r < 1} = exp {—C([|Q][2)rs0 — C'so log p}

for some constant C(||Qpl|2) > 0 that only depends on ||€2]|2. The proof is thus
completed. O

5.2. Posterior sparsity

In this subsection, we aim at establishing Lemma 5.4 regarding the posterior
sparsity of A given the observed data, which in turn depends on Lemma 5.3
that characterizes the prior sparsity of A.

Lemma 5.3. Assume the prior specification in Section 3.1 and conditions
A1-A5 hold. Then, for any constant k > 1, there exists some constant C' > 0
such that

TIg(0 : |supp(A)| > ksp) S exp{—Ck(rsglogn + sologp)}.
Proof of Lemma 5.3. Write

Ig (O : |supp(A)| > Kkso)

p—r p—=r

1
= Z mp(1S]) = Z Z exp{—rtlogn — atlog(p — r)}
[S|=|rs0] t=|rso)
p—r
<2 Z exp(—rsglogn — Cslogp)
t=|Kso]

C — C
<exp | —krsglogn — Emso log p Z exp —530 log p

t=|rso]
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S exp{—Ck(rsplogn + sologp)}
for some absolute constant C' > 0. The proof is thus completed. O
Lemma 5.4. Assume the prior specification in Section 3.1 and conditions

A1-A5 hold. Then there exist some constants kg > 1, ¢ > 0 depending on
I%0]|2, such that

Eollg {0 : |Supp(A)| > KoSo ’ Yn} < 36*5(7’5 10gn+slogp).
Proof of Lemma 5.4. Let

En = {Dn > exp{~Crnn;, log(2||Q0|2)} 16 {0 : [|2(8) — Qollr < 1} },

where 1, := /(rslogn + slogp)/n. By Lemma 5.2, Py(Z5) < 2e~°" for some
constant ¢ > 0 depending on [|Qp]|2, and by Lemma 5.1,

Mo {[|2(6) — Qo[ < 7} > exp(—Corso log n + Csologp)

for some constant Cy depending on ||€2g||2. Therefore, over the event =, we
have

Dy, > exp{—Cnn? log(2Ql|2) — Corsologn — Csqlog p}
> exp{—Co(rsologn + sologp)} = exp(—Conn?)

for some constant Cj depending on ||€]|2. Hence, by Lemma 5.3 and the Fu-
bini’s theorem, we have,

Eolly {0 : |[supp(A)| > Koso | Yn}
< Eollg {6 : [supp(A)| > koso | Yn} 1(E,) + Po(E5)

2
< eConnn ]EO

/ exp{((2(6) — £(92)}11o(d0) + Bo (<)
{6:|supp(A)|>ros0}

— ¢Conny / Eo exp{£(£2(8)) — £(20)}Tg(dO) + Po(ZS)
{6:|supp(A)[>ros0}

= o119 {6 - [supp(A)| > koso} + Po(=5)
< exp {C’onnfb — Cko (rsologn + sg logp)} + Py (E¢)
< 2exp (Comy?1 - Cﬁonni) + exp(—crslogn — cslogp).

Therefore, we conclude that
Eolly {0 . |[supp(A)| > Koso ’ Yn} < 3ec(rslogntslogp)

by taking kg, possibly depending on ||€2]|2, to be sufficiently large. |
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5.3. Construction of test functions

In this section, we construct a test function that will be useful for deriving
posterior contraction under the Frobenius norm through Lemma 5.5 below.

Lemma 5.5. Assume the random vectors yi,...,y, follows N,(0,,€2) inde-
pendently, where @ := UMUT +1,, U € Q4 (p,7), and M € M, (r). Let
Qo = UgM,U} + L, where Uy € O, (p,r) with |supp{A(Up)}| < s¢ and
My € M(r). If (e,)52, is a sequence converging to 0, then for any k > 1 and
M > 4, there exists a sequence of test functions (¢n)5> such that

CM2 2
Eq,¢n < 3exp {(20 +4)ksg logp — 7%271} '
41013
CMneé?
sup Eq(l — ¢,) <exp (2053 - n) ’
Sup Ea(l = on) "SI0

where

Hy :={Q=UMUT +1,: |Q - Qllr > Me,,U € Q4 (p,r),M € My (r),
lsupp{A(U)}| < s}

and C is some absolute constant.

The proof of Lemma 5.5 relies on the oracle testing lemma from [21] below.

Lemma 5.6 (Lemma 5.7 in [21]). Let the random wvectors yi,...,yn follow
N4(04, Q) independently, where Q € RY¥?. [f (€,)°2, is a sequence converging
to 0, then for any M > 0 and d x d covariance matrices Q) and Q)| there
exists a test function ¢, such that

CM?née?
Eqa)¢n < exp <Cd — m) + 2exp (Cd — C\/Mn) ,

sup Eqe (1 — ¢r) (22)
(@) |2@) Q0 |,>Me,}

C'Mne? M
< Cd — nll1v
= l 1 { (VM + 22|03 H

with some absolute constant C > 0.

Proof of Lemma 5.5. The proof of Lemma 5.5 is very similar to that of
Lemma 5.4 in [21] and is included here for completeness. Decompose H; by

Hc |J Hs,
S:|S|<kso

where

Hig :={Q=UMU" +1,: Uc O4(p,7),M € M, (r), | — Ql|[r > Me,,
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S = supp{A(U)}}.

Let S := S U Sp, where Sy := supp{A(Uyg)}, and let 5 := |S|. Clearly, 5 <
(k+1)sp and o
€2 = Qol[r = (|22 — ol|r,

where

Q:=UAzMUAHT + 15, Q0 :=U(A)5)MoU(Ay5)" + Isyr

For each S C [p], denote y;s := [yi; : j € S]T for i = 1,...,n. By Lemma 5.6,
for each S and M > 4, there exists a sequence of tests (¢,s5)>2,, where ¢,g is

a measurable function of {y1supp{U(Az)}s-- > Ynsupp{U(Ag)} J» such that
CM?*né?
Eq,éns < exp {C(H +1)sg — 4|Q7|l|€2"} +2exp{C(k+ 1)so — CVMn}
0ll2
CM?né?
< 3exp <2C’nso - —") ,
4(|€2]13
and
CMne? M
sup Eq(l—¢y) <exp |C(k+1)sg — Lolv
Qeils 4 (VM + 2)2(|€20][3
CMné?
< exp (20/150 — —”) ,
8[1213
where

Hig:={Q=UAgMU(Ag)" + Iy, : M € Mi(r),[|Q — Qo[r > Me, }.

Hence we can combine tests by taking ¢, := maxg ¢,s and apply the union
bound to obtain

[kso] 2 9
p—r CM*ne

E0¢n < § < )3€Xp <QCI€SO — n>
S\ s 4[1€2113

CMQ 2
< 3ksg exp (3ksg log p) exp <2C’nso — ZM(:FL)
2
CM?née?
< 3exp {(2C+4)nsologp —”} 7
4|13
and
CMne?
sup Eq(l—¢,) < sup  sup Eg(l— dns) < exp (20/450 _ Qneg> .
QcH, S:|S|<rso Q€5 8(|20]|3

The proof is thus completed. O
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5.4. Posterior contraction under Frobenius norm

Theorem 5.7. Assume the setup and the prior specification in Section 3.1 and
suppose conditions A1-A5 hold. Then there exists some large constant My > 0
and constant ¢ > 0 that possibly depend on ||Qol|2 but is independent of r, s, p,n,
such that

ol <|Q(0) —Q()HF S M\/TSO logn + sglogp ‘Yn) 5 e—c(rslogn—&-slogp).
n

Proof of Theorem 5.7. Denote €, := +/(rsologn + sologp)/n. We first de-
compose the expected posterior probability by

EoIle{[|12(0) — Qollr > Mey | Yo}
< Eolly {[I22(6) — olr > Men, [supp(A)| < roso | Yo}
+ Eollg {6 : |supp(A)| > koso | Yi}

where kg is set to be large enough such that the second term on the right-
hand side is O(e="») for some constant ¢ > 0 (possibly depending on ||€2]|2)
according to Lemma 5.4. It suffices to focus on the first term consequently. Let
Z, = {Dy > exp(—Cone2)}, where Cj is a constant depending on [€2g]|2 such
that Po(ZES) = o(1) according to Lemma 5.2 and Lemma 5.1. Take ¢,, to be the
test function given by Lemma 5.5. Then, we can decompose the first term on
the right-hand side of the previous display by

Eollp {[192(6) — olr > Men, [supp(A)] < roso | Y}
< Eolly {||9(0) — Qollp > Mey, [supp(A)] < koso ‘ Yn} L(E,)(1 — 6n)
+ Eo¢n + Po(Z2).

Since the second term on the right-hand side is upper bounded by

CM?ne? CM?ne?
36Xp{(20—|—4)ﬁ:08010gp— 7”} < 3exp (— 7">
41013 8/10]13

by Lemgna 5.5 with a sufficiently large M > 0, and the third term is also
O(e= ") by Lemma 5.2 and Lemma 5.1, it suffices to show that the first term
is also o(1). Denote

Hy:={Q=UMU"+1,: U €O, (p,r),M € M_(r),||Q - Qlr > Me,,
|[supp{A(U)}| < koso}-

Then by Lemma 5.5, the Fubini’s theorem, and the definition of =,,,

Eollg { £2(8) — o[k > Mey, [supp(A)| < roso | Yo } 1(E0)(1 — én)
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< exp(C’one VEo(1 — gzﬁn)/ exp{4(2(0)) — £(2) 1o (dO)
{60:Q(6)eH .}
= exp(Conei) / Eo(1 — ¢p,) exp{€(£2(0)) — £(2) }I1p(d6)
0:Q(0)cH,
= exp(Cone?) / Eq(1 — ¢,)I(dS2)
{6:2(6)eH.}
< exp(C’onei) sup Eq(1 — ¢y,)
QcH;
C Mne? C Mne?
<e Cn,21+20n5—7”><e <——”>
e ( o 0T8Iz ) T P\ 1619203

by taking M to be suffciently large enough. The proof is thus completed. O

5.5. Local asymptotic normality

In this subsection, we establish the local asymptotic normality of the spiked
covariance model under the sparsity constraint through Theorem 5.8 below.
Some preliminaries are needed to prove this theorem. Define

A, :=1{0:]92(0) — Qllr < Mey, [supp(A)| < koso}, (23)

where €, = y/(rslogn + slogp)/n. By Theorem 5.7 and Lemma 5.4, there
exists some constants M, kg, ¢ > 0, possibly depending on ||Q]|2, such that

EOHG(O e A, | Yn) >1— O(e—cnei).

Under the assumption that sup,,~;(Ag) is bounded away from 1, by Theorem
3.2 in [55],

A, CH{O: 0 — 6|2 < M'e,,, |supp(A)| < koso}

for some large constant M’ > 0. Note that with a slight abuse of notation, we
may use M to denote a generic constant that is sufficiently large such that we
can write

A, C{0:]|6 — 0|2 < Me,, |supp(A)| < Koso}

and A, still satisfies Egllg(0 € A, | Y,,) > 1—OC(e —ene; n). For any S C [p — 7]
with |S| < kgso, let

1 1
Au(S) = { 16— 6o, <M\/T wilogn + 75 ogp supp<A>:S}

for some large constant M > 0. It follows that

A CByi= | Au(S)

S:|S|<koso
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This is because for all @ = [vec(A)T, uTT € A,, with supp(A) = S, |S| < koS0,
we have

16 — 8olls < v/(IS] + [Sol)r +2r2 + r(r + 1)]|0 — 60| 2

1 1 21 1
< (/@0+1)7‘30\/T80 ogn;- So logp < \/r En) ogn;-rs ogp.

Theorem 5.8. Let yi,...,yn N0, Q) with Qo = Q(6), and L(Q(6))

be the log-likelihood function of 6. Suppose conditions A1-A5 hold. Then, the
£(2(0)) yields the following local asymptotic normality expansion:

0(2(8)) — £(S2) :gvec (ﬁ - QO>T (5! © Q) DX (8,)(6 — 65)
- %(0 —00)"D2(0,)T (25" © Q5 1)DS(6,)(6 — 6y)
+ R (0,60),

where © := (1/n) S yiy} denotes the sample covariance matriz, and the
remainder R, satisfies

\/(r232 logn + rs?logp)3

sup |R,(0,00)| < C -

ochB,

with probability at least 1 — 2e—rone, for some constant C' > 0 depending on
[1€20]l2-

The key to the proof of the local asymptotic normality expansion in The-
orem 5.8 is the following lemma that controls the stochastic remainder in the
Taylor expansion of the log-likelihood function. For convenience, we denote by

Ru (g, ¢o) := U(p) — Ulpo) — 2(I, — Xo) ' (Xy — Xo)(I, — Xo) 'Lpxr,
Rq(0,6)) := U(p)(M — Mo){U(p) — Up}"
+{U(p) — Ug}Mo{U(p) — Up}"
+{U(p) — U} (M - My)Ug,

R1(02,Q) := Q51 (2 — Q 9012{90— T2 - Qe < 1.

Lemma 5.9. Letyq,... 7y,L1 k- N(0, Q) with Qg := (). Suppose conditions

A1-A5 hold. Then, with probability at least 1 —2eKOmE, the following stochastic
remainders satisfy

sup 2nvec(ﬁ — QO)T(QE1 ® le)vec{RU(cp, cpo)MoUOT}‘ < Cén, (24)
oenB,

sup ‘nvec(ﬁ — 20)T (5! ® Q5 vec{Ra/(6, 90)}‘ < C6,, (25)
eenB,
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sup |nvec(Q — Q) Tvec{R:(22(8), Qo)}‘ < Cé,, (26)
0chB,

where € := (1/n) >0 yiyi denotes the sample covariance matriz, C >0 is a
constant depending on ||Q||2, and 6, = \/(r2s%logn + rs?logp)3/n.

Proof of Lemma 5.9. The proof is based on reducing the dimension of the
deterministic remainders Ry, Ry, and Ry because, for 8 and 6, the intrinsic
dimension is much smaller than the ambient dimension due to the sparsity. We
first fix S € S(koso) := {S C [p—7] : |S| < Koso}. Let S := S U Sy, where
Sp := supp(Ayp) and 0y := [vec(Ag)", ud]", and let 5 := |S|. Denote by

A =Pg |:1AOS:| , Pg5 = VCC(AS')v 05‘ = |:<il,S:|

for a suitable permutation matrix Pg. Similarly, denote by

A _ _
AO = PS |: SS:| s (POS' = VeC(Aos), OOS = |:SOEJS:| .

By definition of the Cayley parameterization ¢ — U(¢p),
(I~ ATAQ)L + ATAg)™
- I Ulps)
— } T i _ 5
Ulg)= | g, [Asll AR - s

where U(gpg) is the Cayley parameterization that maps the vector ¢z to a
Stiefel matrix in € O(s + r, 7). Write Qg = diag(1,, Pg). Similarly, we can also
write Ug = QS[U(JT:§7 0], where U,g := U(p,35). The permutation matrix Qg
will be useful in this proof. For Ry, write

I-X,a
I, - Xy =Qs [ 0§ Ip_(g+r)} Qs,

where -

0 —A-

I ) 0S5

XOS . X‘Pos |:AOS 0 :| .
Similarly, we also have
X,.—Xp5 O 0 —AT
X, - Xo=Qs [ s 0 05 0} QE, where X, = [AS OS} )

B We first consider Ry(ep, o). Write Ry (g, ¢o) in the following block form
with a zero matrix in the lower block:

RU(‘P,SOO) = Qg |:U(‘10S) _OU(QDOS):|

~ Qs [(I - Xoé)fl(xwg - XSS*)(I - X0§)711(§+r)w
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R g, Pog
= Qg { U(‘Pg 9005)} 7
where we have used the fact that QglI,«, = I,«,. Therefore,
vee(Q — Q0)T (25! @ Q5 Yvec{Ru (0, 0)MoUG }

tr{ (€ — Q20)925 "Ru (¢, 9o)MoUT Q5 }

tr

€ - 0202 "Ru(p, ¢o)MoU] |

{@
tr {UOT(Q — Q)2 'Ru(e, ‘PO)MO} )

where M := MO(Ma1 +1I)~L. Write Q and Qg in the block forms
Qs Qo

Q=Qg 1 Qe.
921 Qoo | °

and
Ujs u?T T
Q= Qg o M, [Ujs 0] +1,) Qg
U ’MOUT* +Ig+r 0 T Q g 0 T
-Q [ 50 o5 QF—Qs [ 9° Qt,
° 0 L stn) ° L0 L o) F
where Q5 := UysMoU_ 5 + Isy,. It follows that

U (€ - 90)95 ' Ru (¢, p0)Mo

/\

= [Ugs 0 QSQS

0
= Uy5(Qs — 205)2 s Ru(#s, $o5)Mo.

y [Ru(wy 9005)} N,

By the random matrix theory (see, for example, Section 5.4.1. in [51]), for any

t>0,

= KoSo + t2
0 <||QS = Qysll2 > Coy/ %) < 2exp(—ct?)

for some absolute constant ¢ > 0 and some constant Cy > 0 that depends on

[30|2, where ky := Koso and Bg5 := UygMoU s + Isi,. Therefore, with ¢
replaced by (2ko/c)(rsologn + sologp), we have,

~ rsglogn + splo
Po ( sup |25 — Qozl2 > Co\/ o8 T %0 gp)
SeS(koso) n

<2 (p - T) exp {—2kq(rsg logn + sologp)}
KoSo

< 2exp{—ko(rsplogn + sologp)}
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Denote [|A|[, := ", 0i(A) the nuclear norm of a matrix. By Holder’s inequality,
the equivalence between nuclear norm and Frobenius norm, and Theorem 2.1
in [55], the left-hand side of (24) is upper bounded by

sup sup 2095 — Q52 UpsMoRu (03, o3) "L
SeS(koso) O€AL(S)

<2 sup |5 — Qs
SGS(HQS())

X sup sup ||U05'M0RU(‘PSaSOOS)TQg§1”F
SeS(koso) OEA,(S)

< n\/r(rso logn + sg log p)

~

sup sup [|[Ru(es,vos)llF
n SeS(koso) OEA,L(S)

1 1 2427, 2] 3
<n\/r(rso ognn+so ng)||9—90||%§\/(r s2logn + rs?logp)

~ n

with probability greater than 1 — 2 exp(—#kgne2). This shows that the left-hand
side of (24) is upper bounded by C'§,, with probability at least 1—2 exp(—rgne?2).

B For Rq, we have, using the permutation matrix Qg,

U(p)(M — My){U(p) — Ug}"

_ Qs [U(sc’s)(M - Mo)O{U(sog) —Ugs}” 8} qQr,

{U(¢) — Ug}Mo{U(p) — Ug}"

— Qg [{U(%) - Uog}MS{U(%) —Ugs}! g} Ql,

{U(g) = Up}(M — M,)Ug

[{U(‘Ps) —Ups}(M -M,)Ulc 0
0

=Qs 0:| an

which implies that

Ra(6,60) = Qs [R“(Gg’eos) 3} Qs

where

Ra(035,6y5) = U(ps)(M — Mo){U(pg) — Uys}"
+ {U(cpg) - UOS*}MO{U(SOS) - Uog}T
+ {U(p3) = Ugg}(M — Mg)U 5.
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Clearly, rank{Rq(0g,0,5)} < 3r. Hence, the left-hand side of (25) can be upper
bounded similarly using Holder’s inequality and (27) by

sup ‘nvec(ﬁ —00)T(2," ® Q5 ')vec{Ra (6, 00)}‘
Bn,

— sup ’ntr {(ﬁ - Qo)leRg(O,OO)le}‘
By

=sup sup |ntr Q5 Qg Do
5 An(S) 9251 Qo — I, (541
. [05Ra(05.005)25 0
0 0
o R B »
=sup sup |ntr Q5 - s D {Qos‘*Rﬂ(eSaeos)ﬂog]
S An(S) IRE Qo — I, (541 0
X [Ispr 0]]]
=sup sup |ntr [I§+r 0} QS‘:QOS‘ R Qo
S An(S) I Qo Qoo — L, (544)

g

<sup sup |ntr {(ﬁg - Qog)ﬂggle(Og, 005)9851}’

S A, (S)
=sup sup ntr{ﬂ Sl(ﬁg Q, )Qagle(Bg,BOg)H
S A, (S)
<nsupllﬂ Y310, - Qogﬂzsup sup  ||Ra(0s,6,3)]l
6c A, (S)
SnSUP”QE Qogll2 sup sup  V3r|Ra(03,605)llr
s 0cA,L(S)
r(rsplogn + sglo 252 logn + rs?logp)3

with probability greater than 1—2 exp(—rgne? ). Hence the left-hand side of (25)
is also bounded by C4,, with probability at least 1 — 2 exp(—rone2).

B For R, we follow the same spirit and let Qg5 = U(pg)MU(pz) + I, and
Qg = UOgMoUng + Is4,. Denote by Q := Q(6). It follows that
_ s —Ng 0 Q.5 0
(QO_Q)QoleS[ 0o }QQ [ T ]QE

p—(5+r)
Q:-Q:)02% 0
—Qs |:( 0S OS) 05 0:| Q:g
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Therefore,
_ 1 0] ¢ >
= 0S 0S
Rl(nv QO) QS |: 0 0:| QS mz::l Qs

Q5 — Q)21 0
% |:{( 0S OS) 05 0:| Qg

-1 —1 oo —1ym
= Qs [Qos (QO§ - QS)Qog 261:1{(905 - Q§)QO§ g Qg
R1(25,Q,5) 0
= QS|: 1 (S) 05) 0} Qs.

Let R1(Qg,Q,5) yield singular value decomposition W;SWI. Following the
same reasoning, we have,

sup ‘nvec(ﬁ — Qo)vec{R1(22(6), Qo)}‘
B,
ﬁg: Qog 612

= t O
Sup sup n tr {QS Qo1 Qg2 — Ip—(§+"“)

S A, (S)

] QsQs
x {Vgl] S[WI o Qg}‘

Qs - Qs Dy {Wl} S
Qo Qoo — I, 4| L O

W3 (@~ 2y5)WiS }|

S A, (S)

=sup sup n|tr
S An(S)

=sup sup n tr{[W'Qr 0]

Snvso  sup || — Qogllasup sup [[R1(Q25, Qog)llr
SES(K()S()) S OEAn(S)

< \/nso(rso logn + s9 log p)||2(0) — QOH%

< \/(T282 logn + rs?logp)3
~ n

with probability at least 1 — 2 exp(—kgne2). The proof is thus completed. [

We are now in a position to complete the proof of local asymptotic normality
(Theorem 5.8).

Proof of Theorem 5.8. We first consider the Taylor expansion of £ as a func-
tion of Q when ||€2 — Qo||r is sufficiently small. By definition,

0 — 6(20) = tr {ﬁmgl . Q*l)} n glog det(2-1920)

= Zu{@- )@ -2}

+ gtr(lp — Q1) + glogdet{(m — ;) +1,}

NS
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_ gtr {(ﬁ — Qo) (5t — Q—l)} + gtr{ﬂé/Q(le —o - hHal*

2logdet{I —olf i - a hHa/.

Let hy := M {00 2(Q ! — Q@ HQY?), k=1,...,2r. Clearly,
1/2 1_ -1 1/2
(max (] < (197 (1211192 [1211€20" 7|2
< [1Q0l2)27H (2 — Q0)25 |2
< [|Q0]211€2 — o][2

Furthermore, using the Taylor expansion technique with the integral remainder
(see, for example, Lemma 6.2 in [22]),

—t Q2o - el + 2 7 log det{T, —ol@y —ahHal/%

=gz{hk+log<1—hk>}=—gzhi z/ N

k=1
1/2 1/2 k—S
= -Ller e - ahey ||r—2/ e

We now analyze the linear term tr{ (€2 — Q0)(Q;" — 271} and the quadratic
term ||/ %(Q5 " — Q~1)QL/?||2 separately. By the matrix series expansion,

Q-0 =051 (Q - Q)(Q - Qo+ Q)
=251 (2 — 20)Q2 {(2 — Q)" + 1}
= 2,12 - Q)2 + Ra(92,90),

where the remainder

Ry (2, Q) == Q51(2 — Q)Q;! Z{ Qo — Q)1

satisfies [|R1(€2,Q0)[r < || — Qo]|3. The vectorization form of the previous
equation can be written as

vec(y' — Q71 = (95 @ Qy H)vec(Q — Q) + vec{R;(2,20)}.

Now we consider parameterizing Q by Q = Q(6). It follows from Theorem 3.1
in [55] that

IR1(€2(6), Q0)[[r < [1€2(6) — Dol[E < (160 — 603

Following the proof of Theorem 3.1 in [55], we obtain the following matrix
decomposition

Q(0) — Qo =3(0) — %(60)
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=Uo(M — Mg)Uj + UgMo{U(p) — Ug}" + {U() — Ug}M, U]
+ Rq(0,0y),

where the remainder

Raq(6, 0) == U(p)(M — Mo){U(¢) — Ug}"
+{U(p) — Ug}Mo{U(p) — Ug}"
+ {U(¢) — Ug}(M — M,)Ug

satisfies | R (0,00)||r < |0 — 002 < [|@ — 60)|3. In the vectorization form, we
can write

vee(E — o) = Dp=(00) (1 — po) + (T2 + Kpp) (UM ® I, )vec{U(p) — U}
+ vec{R(60,0)}.

In addition, by Theorem 2.1 in [55], we have,
U(p) — Uy = 2(I, — X) (X — X0) (T, — Xo) 'Lxr + Rulp; #0),

where Uy = U(ey), and Ru (e, o) satisfies |[Ru(p, wo)llr < [|6 — 00|?. The
vectorization version of the previous display can be written as

vee{U(ip) — U} = DU(i0) (¢ — o) + vec{Ru (¢, ¢0)},

where the Fréchet derivative DU is defined by (4). Recall that D3(6y) is defined
by (8). It follows from the above derivations that

vec{€2(0) — o} = D3(60)(6 — 6o)
+ (Ip2 + Kpp) (UoMg @ Iy )vec{Ru (¢, o)}
+V€C{RQ(0,00)}.
This means that over B,,, we can have well control of the Frobenius norm devi-
ation [|€2(0) — Qo||r: For any 0 € B,
1€2(0) — Qollr = [[vec{§2(8)} — vec(Qo)]|2
< |DX(60)l|2[|0 — 6oll2 + 2[Mol|2[Ru (¢, ¢o) ¥
+ [Ra(6,60)||r

<116 — 60| <\/r23210gn+7"5210gp
SN0 —0o0)1 5 .
n

Hence for the precision matrix 27!, we have
vee(Qg ' — Q71 = (R © Q5 ') DE(60)(6 — 6o)
+(925" @ Q1) (L2 + Ky ) (UoMo @ L Jvec{Ru (¢, @0)}
+ (25" ® Q5 ')vec{Ra(8,600)} + vec{Ri(€2(6), o)},
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with the remainder R; satisfying |R1(€2(8), 20)||r < [1€2(0)—Q0||2 < [|0—60]3.
Denote by
ro-1(6,00) = (25" © Q") (L + Kpp)(UgMo @ I)vec{Ru (0, ¢0)}
+ (2" ® Qg ")vee{Ra(6,600)} + vec{Ra (€2(6), Q0)}
= (L2 + Kpp)(nal ® Qal)VeC{RU(SO7 ®0)MoUg }
+ (2" ® Qg ")vee{Ra(6,60)} + vec{Ra (2(6), Q0)}-

Clearly, |[rq-1(0,00)|2 < ||@ — 6o]|? by the properties of the remainders Ry,
Rgq, and Ry. It follows that

r{(Q — Q) (' — 27} = vee(Q@ — Q)" (2" @ Q) DZ(6,)(0 — 6)
+ vec(ﬁ — QO)Trgfl (6,60),
and
19527 — g1 ?F = tr {(@" - 27 - 212}

=vec(Qy ' — Q71 (Q @ Qo) vec(Qy ' — Q1)

=(0—60)"DX(60)(Q2 " ® Q51)DX(6)(6 — 6)
+ 2(0 - Oo)TDZ(Ho)TI'Q—l (0, 00)
+ro-1(0,00)" (20 ® Qo)ra-1(8,60).

Denote by

74(8,80) :=2(8 — 65) " DX(6) " r-1(6, 6)
+ro-1 (0, Bo)T(QO & QQ)I‘Q—l (0, 00)

By the property of the remainder ro-1, we see that |[r,(0,60)| < [|0 — 6o]|3.

Now putting all the above derivations together, we obtain the following expan-
sion of the log-likelihood function:

£(S2(8)) — £((60)) = Fvee(S — 2o)(2" © 251 DE(6)
~ (000" DR(00)" (2" © 251 ) DR (00)(6 — o)
ne~ M (hy — s)? n
. ;/0 s gra(0.00)
+ gvec(ﬁ — ) Trg-1(0,6y).

The third line of the previous equation is the deterministic remainder and the
fourth line is the stochastic remainder. For the sum of the integrals in the
third line of the above display, since ||€2(0) — Qo||lr — 0, we may assume that
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maxy |hi| < 1/2, and hence,

2r hi 2r hi
n (hk - S) / 2
sup | — g / ———3ds| S sup g (h — s)°ds
oe(s) |20 (1—s) ‘|Q(9)790HF<M6”k “Jo

< h hi < n|2(6) — QI3
n, max [helg Z Sl oll

<nll6— 6ol < 5

where &, = /(r2s2logn + rs2log p)? /n. The stochastic remainder is given by
gvec(ﬁ — 0)Trg-1(0,0,)
= nvec(Q) — Q0)(2;' @ Qg Hvec{Ru (e, o) MoUG }
+ gvec(ﬁ — 20)7 (25 ® Q5 )vec{Ra (0, 60)}
+ gvec(ﬁ — ) Tvec{R, (2(0), )}

By Lemma 5.9, the supremum of the stoghastic remainder over 8 € B, is also
O(0,,) with probability at least 1—2e~"9"n  and hence completing the proof. O

5.6. Distributional approximation: Proof of Theorem 3.2

This subsection elaborates on the proof of Theorem 3.2. We remark that the
proof is a generalization of the proof of Theorem 6 in [11], but it also requires a
local asymptotic normality argument developed in Section 5.5. For convenience,
we introduce additional notations that will be used to characterize the limit
shape of the posterior distribution. Denote by

Zy = \/2(951/2 ® Q, *)DX(0y), &, = \/g(ngm ® Q1 )vec( — Q).

Let Zos := ZoFg. Then és, I5(6), and wg can be equivalently written as
Os = (Z3sZos) ' Zis(Zobo + €n),  nls(60) = ZisZos,
. (]S _ 1 ~
g _m(Sh det{27(Z{sZos) 1}/ % exp <§||Z0505||§> )
()05D

where 7(]S|) is defined by

A(1S]) = / o CP2ec(As)1)AS.

The proof is based on the following collection of technical lemmas. Recall that
the sub-Gaussian norm and the sub-exponential norm of a random variable X
are defined by

X [l = supp™/(Eo| X|P)V/P, | X[ly, = supp™ ' (Eo| X[7)"/7.
p>1 p>1
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We refer to [51] for a detailed review on the concept of these (Orlicz) norms.

In order to establish Theorem 3.2 via local asymptotic normality, it is nec-
essary to understand the behavior of (8 — 69)TZle,,, which we discuss in
Lemma 5.10 below.

Lemma 5.10. Let yl,...,yni'ri\'fi'N(O,Qo) with Qg = Q(6p). Suppose condi-
tions A1-A5 hold. Then there exists some constant Cy > 0 only depending on
the spectra of g, such that

Po {1(6 — 00)"Z8 2l > Coll6 — Go]l1/nlogp} <

DN

Proof of Lemma 5.10. Denote by

AT
XO = XQQO — |:0’I”><T AO

and Cg:= (I, — X)L
Ao 0<pr>x<pr>} P

By definition, we have

2
=(0-60)"Zje,
n( 0) Zge
= (¢ — SDO)TDU(SDO)T(MOUE ® L) (L2 + Kpp)(ﬂal ® 961)\’60(9 — Qo)
+ (1 — 10)T DL (00)T (25 © Q5 H)vee(Q — Qo)
= dvec(Xy — Xo) " {(I, — Xo) L%, MoUJ ® (I, — Xo)~ "}
x vee{Q5 1 (Q — Q20)25 '}
+ (e — po) "D vec{ 5 1 (2 — Qo) 1}
= dvec(Xy — Xo) Tvec{CT (€ — 20)Q25 ' UM, I, Co }
+ vec(M — M())TVEC{Ugﬂal(ﬁ — Q())ﬁalU()}
Let e; be the standard basis vector along the jth coordinate in R?, i.e., the jth
coordinate being 1 and the rest of the coordinates being zeros, a; := leCoei,
B; == Qy ' UgMoL!, .Cle;, and v, := ;' Ugex. Then by the Hélder’s inequal-
ity,
(60— 60)" Zg e
< 2nl|vec(X, — Xo)|l max ‘a}(ﬁ _ Qo)ﬂh’
J,h€lp]

= ol mas | (9 — Qo)

)

<nll6-8 {2 ‘ T - Q
<n| Oulj,hegl]%e[r] a; ( 0)Bn

(S - Qo)’)’z’} -
Observe that

IC0lI3 = Amax(Co Co) = Apin{(I+ Xo)(I = Xo)} = A, (T + XoX() < 1,

min min
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and that

leejllz < 11925 l2l1Collz < 1, 1185112 < 11925 12/l Aoll2l| Coll2 < [I€]l2,

vella < 1192 M 12 < 1, 0 yillw, S (0" Q0u)/? < [[Q0]l5/ [u]l2 for all u € R.

It follows from the properties of Orlicz norms that

ma,
B

T T T T
X |la;yiy; B < max||a;y; max || 85 y; =0(1),
hel) || RARE! h”’ébl = e H j ZHW iclp) || j 1||w2 ( )

2
T i T < 5 i =0(1
max Ve yiyi villy, < gg[xﬁllvky [l (1),

and hence, by the union bound and the Bernstein-type inequality for sub-
exponential random variables (see, for example, Proposition 5.16 in [51]), we
have, for any ¢ > 0,

Po (|(8 — 60)"Zg €| > t[|6 — 6o ]l1)

T T

ZZPO ("Yg(ﬁ - Qo)ﬁ’z’ > %)

1 n
0 (‘ﬁ > (o) yiy! By — o] QoBh)
=1

+

Il
M=
P’gs

o t
2n
t)

>_
n

N

n

> (wyivin — v Qov)
i=1

1
n

2

t
<2(p* +rH)exp {—C’O min (E’t> }

t2
< 4exp{2logp—00min (—,t)}
n

for some constant Cy > 0 (possibly depending on the spectra of €g). The proof
is completed by taking t = (4/C)'/?\/nlogp |

Lemma 5.11 establishes the ¢;-norm posterior contraction of @, which serves
as an intermediate step towards proving Theorem 3.2.

Lemma 5.11. Assume the setup and prior specification in Section 3.1 and
suppose conditions A1-Ab5 hold. Then, there exists some constant M > 0 inde-

pendent of r,s,p,n, such that
Yn) <

. r2s2logn + rs?lo
Eoll; <|a— 6ol > M\/ & &P

n

bR
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Proof of Lemma 5.11. Denote by

A, { o - ool < 2" SQIOgnHSQlogp}

and
Qs(d8) := {$(85s | 85, (ZTsZos)")dOs}{00(dOs-)}.

By definition, we can write
(0 € A | Y,)

_ [Z o181 exp1Z0s95113/2) oy o7 70 31317200 Af)]

S€So (CERRICED)
7TP(|S|)eXP(||Zos‘§s||§/2) 7r s
” L‘Z; sy o rZesos) )

x Qs (RO o

Using the fact that for any fixed index set S € Sy, and any measurable set
BcC }R(pf'r)r+r(7‘+1)/27

et (2n(2Zfs205) 1 2Qs(5) = [ exp{—%nzos(es—és)n%}des,

where Bg = {0s : [0L,0L.]T € B} is the intersection of B with the subspace
RISITHr(r+1)/2  we write

(0 € A | Y,)

82 X
_ [Z mp(|S])ell %0591z /2/ 6(1/2)Zos(9393)|§d931
SESo (s )(SD) (A5)s

P -1
y [Z (]S ellZosOsliz/2 /e—<1/2>|zos<es—és>|§d931
oS (FPRUED

_ [Z M/ <1/2>|zosés|§(1/2>||zos(9s§s>||§dgsl
ézs, (s

-1
> m(15]) /e(1/2)|Z°s§S'g_(l/z)|Z°S(95_§S)”§des] .
ézs, (s (ISD

Let t, = Z¢0p+e,,. Observe that zosés is the projection of t,, onto the subspace
spanned by the columns of Zgg, and by Parseval’s identity, we have

X

1 ~ 1 ~ 1 1
§||Zos‘95||§ - §||Zos(95 —0s)|5= §th||§ - §||tn — ZosOs]3
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and that

1
§||tn — Zo6o]3

1
= (tn — Z060) " Zo(0s — Bps) — §||Zos(05 —009)3

1
- §||tn — ZosOs]5 +

1
=€, Zos(0s — 6ps) — 5”205(05 — 6os)|3-

Note that [[t,]|3 and ||t, — Zo8o]||3 do not depend on € or the indexing set S. It
follows that

g0 € A | Y,)

- [Z T8 o, {3stsl - %nzos(es—és)%}des]
|S| w)s

SeSo
—1
2Dy (il .
% o ran | &P 511ZosOsllz — 1 Zos(0s — O5)2 p dOs
L;O (\S|) (1S1) 2 2
= [Z M/ eezzos(ﬂseos)|zos(gsgos)|g/2dasl
3OS Jeag)s

1
y [Z m(15]) /esZzgs(es—eos)—|zos(es—eos)||§/2d051
ses, (s (ISD

NOO

We now analyze the numerator N,.° and the denominator D2° separately.

B We first analyze the denominator DS°. Denote by Ug(d€) := (d0s){do(dOs)}
for any S € Sp. It follows that

= I 1 ,
D¢ = exp < €, Zo(0 —0y) — =||Zo(0 — 09)||5 ¢ Us(dO
7= X s | ev e - o0 - g1z -onig} usian
mllSol)

B (|so) (IS0

By definition of the multivariate normal distribution, we have,

QSO (d@)

5 [ {120 - 00) - F1000 - 00)13 Vs, 00

_ exp{—(1/2)[|Zo(6 — 60)I3 + (8 — 60)" Zj 1 }Us, (d6)
Jew-rrsrrin 2 €xp{=(1/2)[|Zo(0 — 60) |13 + (6 — 80)"Zj €1 }Us, (d6)

Define the measures

1
15(00) = cxp {5 20(6 — 60)[3 + (6 — 60)ZF e, | Us,(00)
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1 2
CSo (dIBSO) = eXp 75”2050/350”2 dBS(n /850 = 050 - 0030

and the probability distribution &s,(dBs,) = Cs,(dBs,)/Cs, (RIFIr+r(r+1)/2),
Then the denominator n(R®=7)7+7("+1)/2) can be lower bounded as follows:

sy (RE=r+7(r+1)/2)
1
-/ exp{——uzo(e—eo)n%+<e—oo>TZEen}Uso<de>
R—r)rt+r(r+1)/2
-/ exp{ ||ZOSoﬂSo||2+ﬂsozoso€n}dﬂ50
RISo|rr(r+1)/2
— CSO (R|So\r+r(r+1)/2) / eXp(ﬂEOZgSOEn)(}SO (dIBSD)

RISolr+r(r+1)/2

> (s, (R|So\r+r(r+1)/2) exp {/ (ﬂgo ZOTSOEn)da'SO (dﬂso)}
R

= (g, (RISIFrH0/2) = det{2m(Zs, Zos,) " /2,

ISolrr(rt+1)/2

where we have used the change of variable Bg, = 05, —6os,, Jensen’s inequality
applied to the distribution ¢, and the fact that og, is symmetric about zero so
that the expected value of Bgo ZOTSOEn with regard to o(dBs,) is 0. Hence, we
obtain the following lower bound for the denominator D{°:

00 mp(|So]) ox T . 71 . 2
przgies | p {20060~ 00) — 12006 - 60} Us, (00)

:MUSO(R(””)T”(T“)/Q)E mp(s0) (2)or/2Hr(r+1)/4 .
(Eﬁ) V5o (150) exp(so log p) det(Zjg Zos,)'/?

By the geometric-algorithmic mean inequality,

det(Zgs, Zos,)"/?
|So|r—+r(r+1)/2

= { H Ai(onsOZoso)}l/z

[Solr+r(r+1)/2 }S|r/2+r(r+1)/4

IN

N (ZTs Z
[S|r 4+ r( r—l—l)/ Z (Zos, Zoso)

|So|r/24r(r+1)/4
Z Zos ) sor r(r
{ o } < (|1 Zos, [|3)>er /2t

i=1

|S|r +r(r+1)/2

n|[DX(8o)]13/2

)SOT/HT(TH)M < exp(Crsglogn)

for some constant C' > 0. Therefore,
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D;° > mpy(so) exp (—sologp — Crsglogn) .
B We next analyze the numerator N2°. Write
NE= Y 7rf(| |3§ (51205 (B5—005)—(1/2) | Z0s (0s—005)I13 4
SeS, ( ‘)’Y | ‘ AC)S
s (”p)ﬂ D / ¢ 1 0(0-00)~(1/2)120(0-00) 17 (1)
T S‘
s )

SeSo

Denote by Z,, := {|(0 — 00)TZ{e,| < \|® — 6|1, }, where X := Co/nlogp is
such that Pg(Z¢) < 2/p by Lemma 5.10. By definition of A,,, for any 8 € A¢,
we have, [|@ — 6o||1 > M+/(r2s21logn + rs2logp)/n. By Theorem 2.1, we have

025 (Zo) = 2 Amin {DZ(00)" (35! ® =51 ) DX ()}

2
n . _ _

=5 dnin 19" 295D (0063
n . {DE(Oo)}

> —Amin (251 min DX(6,)60) “— >n

Then over the event =, with supp(A) € S and 6 := [vec(A)", uT]T, we have,

(9 — oo)TZOTé‘n S 25\”0 — 00”1 — 5\“0 — 00“1
1 Y2 /200 -6 .
—2{5izat0 -0} {2 Ao - anly

1Zo (0 — 60)]|2
1 2)210 — 6|3 N
< Z|1Zo (6 — 8)]? L__ _)\|O -6
= 2” 0( 0)”2+ O_min(ZO)QHG_OOH% || 0”1
1 Corsglo 0—0y2 -
< 2120 — 0oy 3+ Corsolosrlo “Boll: 54 g,
2 6 — 6oll3

1 _ _
= §||Z0(‘9 —60)|15 + Corsologp — A||6 — 601

where Cj is a constant depending on the spectra of Q. For any 6 € ./Tfl, we
have,

316 — By = Cor/mTogpl — Golly > CoM /75 (log m) (08 ) T 75* (08 P
> C1 M (rsologn + soy/1logp)

for some constant C; > 0. Therefore, by choosing a sufficiently large M > 0, we
have, for any 0 € A¢,

1
exp { 312006 - 603 + (0 - 0072, |
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< oxp { - OERLVTRED) By gy |

for some constant C; > 0 (possibly depending on the spectra of ), which
further implies that over the event =,,,

NE =2 % /( ) exp{egz0<9_90>_ §|zo<o—eo>||§}vs<de>

SESy \ | Ac)s
< exp {— C1M (rsqlogn + so+/7 log p) }
4
7, (|S By
x> %/~ exp <—§||0—00||1> Us(d6)
&3 (s Jag
— exp {_ClM(TSO logn + 80\/7_"1ng)} Z mp(IS])  dlStrrrt)/2
4 Seso (p|§\r)7(|5\) MSlr+r(r+1)/2
KoSo
< exp {_C’1M(rso log n + 504/ log p) } Z mp(t)
! =110
= exp {_ Ci1M (rso logz—i— s0\/1logp) } (1/2) 0507 log(ros07)+ 20 507
< exp {_ C1M (rso 10g7;+ S04/T log p) }

for a sufficiently large M > 0, where we have used the fact that Aoo0 as n — co
and (21).

B We are now finally able to analyze the ratio N3°/D>°. Write

EolIy(0 € A | Y,)

—c = \Nao
<Po(Z7) + Eol(:n)D—O@
2 1 CiM It 1
< -+ exp{so logp — 1M(rsologn + sov/rlogp) +Csorlogn}
p  mp(so) 8
< 2exp ~ CoM(rsglogn + so/rlogp) N 2 < 1
16 p~p

by taking a sufficiently large M > 0 again. The proof is thus completed. O
We are now in a position to present the proof of Theorem 3.2.

Proof of Theorem 3.2. We first claim that condition A5 implies that

Eollg(0 : Sp C supp(A) | Y,) — 1.
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In fact, if Sy N supp(A)¢ # &, then there exists some j € Sy such that j €
supp(A)¢. Therefore,

p

1/2
10 = Bo|2 > [[vec(A) — vec(Ao)|lr = {Z e (A — Ao)ll%}

=1
> [[[Alj« — [Aqljxll2 = [[[Ao]jxl2 = min [[[Ag]j 2.
J€So

Denote by €, = \/(rslogn + slogp)/n. Using the result from Theorem 5.7, we
have,

rslogn + slo
Eolle {0 210 — 6|2 < M\/gngp

Yn} >1—0(e )

for some constants M, c > 0. Hence,

EoTlg{0 : So C supp(A) | Yy}
=1-—FEole{6 : So Nsupp(A)° # @ | Y.}

> 11— Eollp (0 10— Ooll2 = min Aol | Yn)

rslogn—i—slogp ‘Y

>1-Eollg < 16 — Boll2 = M\/ ) >1—0(e7omn).

Let
&= J An(9)
SeSo
r2s2logn + rs?lo
- U {ezne—eoulsm/ — gp,supp(A)—s}
SeSo

By Theorem 5.7, Lemma 5.4, and condition A5, we immediately see that
Eollg(0 € &, | Y,) > 1 — O(e ).

For notational convenience, we denote by t,, := Zy0g + €,

Vg ””p(f D / exp{£(2(8)) — £(2) I (dO)1{S € So},
(s
G5(d0) := {exp(—2[|0s]1)dOs }{do(dOs:)},
us(0) = 5D 305 ¢ 4 () exp{e(2(0)) — 0(2)}Cs(00),
(5D IS)
(8D 1 1 I
vs(dO) := W exp (553% - EHt" — Zos0s]z — 2”90”1)
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1 . N
x 1{0 € A,(S)}exp {5(05 —05)" 21 5Z05(0s — 93)} dfs
X 60(d05c)7

~ m(1S]) (1 T 1 o2
WS = o= o XP | 5€,En — —th — Z0505|| — 2”00”1 ]l{S S S()}
(sDsh T \2 2 ’

1 ~ ~
X / exp{—i(es —es)ngszos(es —95)}(2105,
(An(s))s

_ mp(|S1) (1 T 1 02
Wy = L exp | =€,6n — = |/tn — ZosOs||3 — 2/|601 | 1{S € So}
(rsnsh 2 2 ’

1 ~ ~
X / exp {—5(05 —05) 25 Z05(05 — 95)} dég,
RIS|r+r(r+1)/2

Qs(d6) := {6(0s | b5, (ZgsZos) " )dBs Hdo(d0s: )},
- _1{6 € A,(9)}Qs(d8)
Qs(d8) := Qs(0 € A, (S))

By Parseval’s identity, we have

1 ~
exp (=208l ~ 3t ~ ZosBsl3)
1 _
—exp {260l - g It ~ Zos(ZsZos) " Zasta 3}
1 2 1 T —1 2
= exp {20001~ 218 + 2105 (7o) Zostal

1 1 -~
—exp (2060l ~ gt 13) exp (512058513

Note that exp{—2(|0o|1 — (1/2)]|t,]|3} does not depend on the supporting set
S. Therefore, by definiton of @Wg, we have

g o _m(Sh det{2m(Z T4 Zos) 111/

CRORU(ED
1, s 1 ~
x exp (5 llenlld = 2160l — 516 — Zossl3
= wg.

Namely, Ws = @s/d pes, @1, S € So. For any probability distribution P(-)
and any event A, we have, by the law of total probability,

HP(,) _BCnA)| (BB AP — BB APA)
P(A) TV B ]P(.A)
< sup FBNAVP(A) + sups PBAAPAY) _ o o

P(A)
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For any measurable set B C 2(p,r), the (exact) posterior probability of B given
&, and Y, can be written as

Me(BNE, | Yy)

(€, | Y,)
_ Sses 1SN () IS fine, expALA)) — £(€20)}Cs(d6)
S seso (IS5 A (SN fe, exp{U(€2(8)) — £(S2)}Gs(d6)

_ Zses, SN () IS fina, 5) P {LRAB)) — (920)}C'5(d6)
S sess (SN (5 AN [, s exP{U(2A(B)) — £(2)}Gs(dB)

_ s (B)
SeSy I ZSESO s ()llrv

By the triangle inequality, the total variation distance between I1(d€ | Y,,) and
I1°°(d6 | Y,,) can be decomposed as follows:

Eo[lTTe(0 € - [ Yyn) = 115°(0 € - [ Yn)[[1v
g0 €-NE,)

=B [lel® €I = TG e g llry (28)
+Eo Z s () - Z vs(+) (20)
i3 1 ses, msOllrv o 5 11 ses, vsOllry .
vs(-) oip
e S€So > ses, vs(C)llrv R TV )

The first term on the right-hand side is upper bounded by 2EqIIg(0 € £S | Y,),
which is O(e‘cmi) by Theorem 5.7, Lemma 5.4, and condition A5. It suffices to
focus on the second and the third term. For the second term on line (29), write

_ Z ks
S | >2s vsllTv v
_ H 1> svsllTvdoglis —vs) + (1 Xgvsllrv = 1D psllTv) Do vs
||Zsﬂs||TvH YosvslTv

Jotms = [ (G ) ams

TV
2 Zs HMS - VSHTV

= sup
> msliTv ||ZSMSHTV Z

dVS>
su d
=] ZsusHTvZ : <dus h
dus>

< sup s (B

|| Zs ,usHTv Z H (dﬂs Loo (An(S))
=2 sup ||1 — <d£> .

SeS, ds /1l Lo (an(9))
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By definition of vg and pg, for any 8 € A, (S), we have
1 2, 1 a2
—log —=(0) = £((6)) — £(R0) = 5 llenllz + 51t — ZosOs]l2
1 ~
+ 51 Zos(6s — 05|l + 2/160s11 — 20s])1.-

Observe that Zos(é\s — 0y) is inside the column space of Zgg, and t,, — Zosé\s
lies in the orthogonal complement of the column space of Zgg, it follows from
the Parseval’s identity that for 8 € A,,(S),
[tn — ZoB|3 = lItn — ZosOs3 = [[tn — ZosOs + Zos(0s — 05)||5
= [[tn — ZosOs|3 + | Zos(0s — 85)][3.

Denote by &, = \/(r2s2logn + rs2logp)? /n. Using the fact that

1

1 1
(0 —60)"Zge, — §HZO(9 —60)|3 = —§||tn — ZoB||3 + §||tn — ZoBy|3,

we can further obtain

~log 35 () = 1(92(0)) — ¢(€2) —

1 1
|ty — ZoOol? + =||t,, — Zo0O|?
s [t 0 0H2+2H , 003

2
+2(18osll ~ 105112
= 1(26)) ~ ((9) — (0~ 00) ZF e, + 5 Z0(0 — 60)3

+2([[€0s ]l = [16s]11)
= Rn(8,60) + 2([|60slr — [[0s]l1),

where the remainder R,, satisfies

sup sup |Rn(0700)| < sup ‘Rn(0»00)| < 05n
SESo 6 A, (S) ochB,

with probability at least 1 — 2e~rone, by Theorem 5.8. In addition, we also have

sup  sup 2[|6ps|li — ||Os]l1] < sup sup 2||0s — Oosl1
S€80 0 A, (S) 5€80 0 A, (S)

< \/r2$210gn+7“5210gp — o(1)
n

by definition. Therefore, the term on line (29) is upper bounded by

d
2 sup i

SeSy dus Loo(An(S))
= 25825 1 —exp{—Rn(6,60) — 2([6osl1 — [10s]l1)}H 1 _ (4, (s))
o
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< Co,

<2 [exp { sup sup (|Rn(8,60)| + 2(/|6os][1 — ||05||1))} -1
SE€S) B A, (S)

with probability at least 1 — 26’”0"631, where we have used the fact that e* —1 <
22 for all = € (0, 1]. This shows that the term on line (29) is O(6,, +e~"0"%). We
now finally focus on the term on (30). Using the fact that Ws = ©s/ ) s, T,
we have

M0 Y,) = <£> Qs(d6)

SeSy ZSGSO ws
and

ws

S%;o | ZSESO VS( )Ty S%;o (ZSESO @s

) Qs(d6)

because by construction, vg(df) = @sQg(d6). Note that for any measurable
set B, Qs(BNE&E,) = Qs(BN A,(S)), and by definition, Qs(B) = Qs(B N
An(5))/Qs (A (S)). Therefore,

OO eBNE Y,  Yses, WsQs(BNEY) Y ges, @sQs(BN An(5))

OFEO €& | Yn)  Yges, WsQs(En)  Yges, @sQs(An(S))
_ 2ses, P5Qs(An(9))Qs(B)
ZSESO 7%SQS (An(s))
Furthermore, by Parseval’s identity, we have
m(|S]) 1ZosBs12/2 171/2
= e ellZ0sO512/2 det {27 (Zg s Zos) T} 2 Qs (An(S))
REAEIN ’
1
exp ( gllenll 2060l — 5l 13)
mp(1S]) o|Zos6 |\2/2/ { 1 2 \i2
= ——— 057sll2 exp ——HZ S(OS —05)” dfBg x ) (d@sc)
EIREN n 21 ’ ’
1
wexp ( gllenll = 2060l - 5l 13)
m(15])

o 1 .
NV I\Zos0s|\2/2/ exp{——HZos(as —05)|2}d05
(s ) (SD (An(9))s 2 ’

1
<exp ( 3lleal - 216001 - gia3)

= ws,
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implying that

NE(0 € BNE|Y,)  Yses, @s@s(An(9)Qs(B)

Hgo(gn | Yn) 25650 {jSQS(An(S))
@ ~ vs(B)
_ s Os(B) = Dses, Vsl
z(=2=)e

ZSESO ws l ZSESO vs(-)|lrv

Hence, by Lemma 5.11, we know that the term on line (30) is upper bounded
by

l/ .
B | == _ppge. )y,
[Sses, vsOllv -
ge@e-Nn&, | Yn)
=Eo |2 ~Hg@e-|Y,
N TSRS o0c| )TV

1

<OEGIF(0 € £ V) S .
p

The proof is thus completed. O

5.7. Posterior contraction under spectral norm

Proof of Theorem 3.1. The proof of Theorem 3.1 is based on Theorem 3.2
and a discretization trick for the spectral norm loss. By Davis-Kahan theorem
[13], ||sin©®(U(p), Up)|l2 < 2||2(0) — Zoll2/ - (X0), so it suffices to consider
the posterior contraction under ||2(0) — Qql|2 = ||Z(0) — Xp||2- Because

.
g

slogp
and Eg||Ilg(d0 | Y,) — IIg(d6 | Y,)|lrv = O(d,) by Theorem 3.2, where
6 = /(r2s2logn + rs2log p)? /n. Therefore, it suffices to focus on

Yn}.

For any S € Sp, denote by Qg(d6) := {¢(0s | Bs, (ZTsZos)1)d0s}{b0(dOse)},
¥5(0s) := U(ps)MU(ps), where 05 := [pL, uT|T = [vec(As)T, uT]T, and
U(gps) denotes the Cayley parameterization of ¢g = vec(Ag) from R!SI" to
O(]S| + r,7). Then from the proof of Lemma 5.9, we see that for any 8 =

slo
EoTl, {||ﬂ(0) — Qolls > M ngp

< Eolly® {HE(@) =Xl > M

+ Eo|[TTo(d6 | Y,) — Tg°(d6 | Yy)l|Tv,

slo
EoII {||z(0) — Solla > M ngp
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[vec(A)T, uT]T = [T, uT]T with supp(A) = S D Sy, there exists a permutation
matrix Pg such that

A=Pg ﬁf] . Ag=Pg [A{;S] ,

which further implies that

U(p) =Qs [U(O(PS)] » Up=Qs {U("SOS)} )

where Qg = diag(I,,Pg), and ¢os = vec(Aps) for an appropriate Ags €
RISIX7 Therefore, for any 8 = [vec(A)T, uT]T with supp(A) = S O Sy, we
have
I5(0) — 2 = [Ulp)MU ()" — UM UL,
~lq U(ps)MU(ps) — U(pos)MoU(pos)™ 0] 1
- S 0 0 QS

= [|Zs(0s) — Ls(0os)||2,

2

where o5 = [pig, o]t

Now we proceed to analyze the probability of the event
1
{nzw) — Sz > M %}

under the II3°(d0 | Yy) distribution. By Lemma 5.11, there exists some con-
stants M; > 0, such that IIg°(0 € AS | Y,,) = op, (1), where

~ r252logn + rs?lo
Ay = {49;||¢9—90||1 <M1\/ £ gp},

n
Yn}

1 ~
< EolI® {||z(e) ~ Sl > M4/ 2 ‘;gp,e c A,

Therefore,

slogp

Eollg” {IIE(G) =Xl > M

.

—~ ~ 1
=Ey ) @sQs {9 €Ay [|2(0) — o > My/ 2 ‘;gp} +0(1/p)
SeSo

+ Bl (9 e A | Yn>

~ ~ I
=Ey ) @sQs {9 €A, |Zs5(0s) — Ss(Bs)2 > My/ 2 ‘;gp} +0(1/p)
SeSo
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=Eo Y ©5Qs(Bn(S)) + O(1/p),

SeSo

where

lo ~
B, (S) = {9 [ Xs(0s) — Xs(0os)|l2 > M %0 ngpﬁ € A,,supp(A) = S} :

Now let p(S) := |S| +r, SPS -1 .= {v € RP(S) ||v||2 = 1} be the unit sphere
in RP(5)and let SP)=1(1/5) be a 1/5-net of SP(5)~1 with smallest cardinality,
namely, for any v € SP(5)=1 there exists some u(v) € SP(9)~1(1/5), such that
|lu(v) — v|j2 < 1/5. It follows that

1X5(0s) — Xs(60s)]|2
= max [vI{Z5(0s) — Ss(os)}v]

veSP(S)—1
= x|y — u(v) £ u)} T (Bs(05) — Bs(00s)} v - u(v) +u(w)l
< max {2v-uM):+]v- u(v)[[3}Zs(0s) — Ss(8os)ll2

TI3s(05) — X5(0
uesﬂ?—}i(l/&s)‘u {Xs5(05) — X5(00s) }ul

< S1Xs(0s) — Xs(00s) |2 + max u"{25(85) — Bs(6os)tul,
uesr()-1(1/5)

N —

implying that

||Es(05) — 25(005)”2 S 2 max |11T{Es(05) — 25(003)}u|.
uesSr(8)-1(1/5)

In addition, we also observe that there exists some constant ¢ > 0 such that
log |[SP)=1(1/5)| < ep(S) = |S| + 7 < ckgso. Clearly, for any 8 € B,(S),
|10s — Bosll2 < ||0s — Oos|l1 < M1(0)e,(0) — 0. Then by Theorem 3.1 in [55],
we have

VeC{Es(es) — 25(005)} = D25<905)(05 — 005) + VeC{Rs(es, 005)},

where

2s2logn + rs?logp
n

whenever @ € B,,(S). Hence, for all @ € B,,(S) and all u € SP(5)~1

[ {Z5(05) — Ts(60s) Hul
< |(u®u)TDEg(0s)(0s — Oos)| + |Rs(0s,605)||r-

.
IRs(0s,005)|lr < 105 — 6osll3 < 10s — BosllT <

Note that

2s logn—H“S logp< /slogp\/ rts3(logn)? r253logp}
nlogp n
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4.3 243
< \/slogp ax{r s (logn)’r s logp}

~
n n

/s logp r2$2 log n)3 (rs?logp)3
’ n
so logp
= ]_ _—
of1)y/ 22

because of condition A4. This implies that |Rgs(0s,60s)|lr = o(+/(slogp)/n)
whenever 6 € A,,. Hence, by the union bound, we further write

T M slogp
< Qs { max lu'{Xs5(0s) — Xs(0ps) tu| > — 5 ,0 € .A }

uesr(s)-1(1/5)

< > Qs {|UT{ES(93) 3s(0os) hul > —\/ Slogp 0 € A, }

uesP(S)-1(1/5)

< Z QS{|(U®U) DES(QOS)(GS—OSN S % Sl(;gp}
(1/5)

uesSr(s)-1

+ > Qs {I(U® )" D35(Bos) (05 — Bos)| > ? SIC;Lgp}
(1/5)

uesr(s)-1

= ) Qs {|( @ u)" D35 (00s)(0s — Os)| > % Slogp}

ueSP($)-1(1/5)

slo
+ > ]l{(u@u) DX5(005)(0s — os)| > _,/ gp}
(1/5)

uceSp(S)—1

Therefore, we obtain

> EowsQs(Ba(S) < Y. > EoQs{Cn(w,8)}  (31)

SeSo SESo uesr(5)-1(1/5)

+ ) > Po{Du(u,9)}, (32)

S€S80 uesr()-1(1/5)

where for any S € Sy and u € SP(5)71(1/5), we define

Co(u,S) := {(eﬁ) |(u@u)TDEg(6ps)(0s — Bs)| > % sl(;gp}

P8 {é;( ® )" DSs(00s)(0s — Oos)| > A;[ Sl(r)zgp}.
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We analyze the two terms on line (31) and line (32) separately.

A For the term on line (31), we use the fact that Qg is a (degenerate) multi-
variate normal distribution and write

A M [sglo
“ {(“® W) DI (805) (05 — 5)] > & %}
M [splo
:Pws <|WS>8 0 gp>,

where condition on the data Y, and hence, 55,

ws = (u®u)TDSg(00s)(0s — 8s) L N (0, Vs),
Vg := (u X u)TDES(903)(ZOTSZQs)ilDzs(Oos)T(u ® u).
Note that by Theorem 2.1 and condition A2,

2 _ _ _
1(ZosZos) "Il = ~|{F5DX(80)" (2" © Q) DE(60)Fs} ">

2
= EU;}H{FEDz(eo)T(le ® Q') DX(0))Fs}
2 —1
= Hﬂmllin . 05F5DX(60)" (2! © Q1) DX(60)F 505
Sl2=
2 _ _ _
< = Puin(@ © )02 {DE(00)} 07 (Fs)] " = O(1/n),

implying that Vg

IN

|1 DX5(005)3]1(ZEsZos) |2 < C/n for some constant
C' > 0. By Chernoff bound and the fact that wg £ —wg under Qg, we further

have
M [slogp
Pws <|w,5‘ > § n )

M [slogp M [slogp
= Fos <w5>§ n >+Pws <w5<—§ n

Msl
= 2P, <w3\/nslogp > ﬂ)

8
< 2Eus exp(wsynslogp)} _ 2exp{(Vsnslogp)/2}
exp{(Mslogp)/8 exp{(Mslogp)/8}
2exp{(Cslogp)/2} _,  f (M O\
= “op{(Mslogp)/8}  ° p{ (8 2) logp}'

Therefore, the term on line (31) is upper bounded by

2> Y ew{- (-5 stoun)

S€S0 uesP()=1(1/5)
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KoSo
p—r M C
<2 —| = —-=sl
< tg;o ( " ) exp(ckoso) exp{ ( 3 2) S ng}

M C .
< 2kK080 €xp {KJOSO logp + ckoso — (? - 5) Slogp} < e~ (Mslogp)/16

by taking a sufficiently large M > 0 because s = sg + 7.

A We are now left with the concentration of 55 —0ps on line (32). Since Sy C S,
it follows that

05 — Oos = (ZgsZos) ' Zys(ZosOos + €n) — Oos = (ZosZos)  Zosen

B 20s) ELZ el - 20005 )

n _ 1/ _

= §(ZOTSZOS) 'FEDE(00) Tvec{Q,1 (2 — Q0)Q '}

= {FID3(60)" (25! © ;1) DE(8,)Fs}  FEDE(6y)"

x vec{Q5 1 (Q — Q20)25 1}

Therefore,
(u@u)TDEs(00s)(8s — Oos) = BEvec{Q5 (2 — Qo)1)
where
8L = (u@ W) DS (00s) {FEDE(0:) (25 © 25 DE(0,)Fs)
x FEDX(0,)".
Consider a p x p matrix Bg such that vec(Bg) = Bg. It follows that
ps = (u®u)TDEs(00s)(0s — bos) = vec(Bs) Tvec{2 (2 — Qo) '}

= tr {Bgngl(ﬁ - 90)951} = tr {Esﬂgl(ﬁ - 90)951}

= tr {leﬁsﬂgl(ﬁ - ﬂo)}

— —tr(Q5'Bg) + %tr (leﬁsﬂgl ;yiy?> ,

where ]§5 is the symmetrization of Bg defined by ]§S = (Bs + BY)/2. Also
note that

Bs|le
< IBsllr = [1Bsll2
< | DX(60) 2 DE5(00s)l|2[[ {F 5 DZ(60) " (25" © Q51 )D(00)Fs} |2
—o(1).
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Since Y7, y;yi ~ Wishart(n, ), it follows from the moment-generating func-
tion of the Wishart distribution that (see, e.g., Chapter 8 of [40]) for any u € R
with u/n — 0 and sufficiently large n,

~ n ) ~
Eq exp {tr (%QolBsﬂol Zyw?) } = exp {—g log det (I — FuﬂolBs) } .
i=1

Observe that Qg 'Bg and Q 1 QESQS !/2 are similar matrices having the same
set of eigenvalues, that (2u/n))\j(ﬂgl/2Bsﬂal/2) = 0(1), and that log(1+=z) >
x — 22 for sufficiently small |x|, we further write

2 ~
log det (I - —“95135>
n

p p
20 1~ 2u s
= log); (I— — 1BS> =) :log{l— ?Aj(nolBs)}

Jj=1 j=1

P

2 12~
Zlog {1 - ;u)\j(ﬂo 1/23590 1/2)}
Jj=1

Y

, 2
2u —1/25 —1/2 2u -1/25 ~1/2
DIESNUTE R C B S N C e el
j=1 Jj=1
2u 1= qu? =
> —Ftr(ﬂo 'Bg) — ?HQO HI31Bs |l

2u s Cu?
Z —Ftr(ﬂo BS) — F

for some constant C' > 0. Therefore, with u/n = o(1), for sufficiently large n,
we have

15 U 15 _ =
Eg exp(ups) = exp{—utr(Qg 'Bg)}Eq exp {gtr (QO 'BsQ,! ZYiY;F> }
i=1

- 2 _
= exp{—utr(; 'Bs)} exp {—g log det (I - #Q01B5> }

~ 2u ~ Cu?
< —utr(Q7 ' Bs) + 2 (7 1 Be) + ——
_exp{ utr(Qg S)—i—2 ntr( o Bs)+ o
< exp(Cu?/n).

Hence, by the Chernoff bound for normal, we obtain

~ M 1
P, {|(u % u)TDE5(0os)(0s — Ops)| > —1/ 2 ng}

8 n

M [slo M /slo
=Py (Ps > — ngp) + Py <Ps < —— gp)

8 8 n
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Msl Msl
<Py (psx/nslogp > ﬂ) + Py (ps\/nslogp > ﬂ)

8 8

< Eoexp(psv/nslogp) L o exp(—psv/nslogp)
~ exp{(Mslogp)/8} exp{(Mslogp)/8}

1
< QeXp{— <§M— C’) slogp}.

Finally, the above bound leads to the following upper bound for the term on
line (32):

Z Z Py {|(u® u)TDzs(eos)(§S — 005‘)| N % Slogp}

8 n
SESo uesSr(S)-1(1/5)

<2y > exp{ <éMC>slogp}

SESo uesr($)-1(1/5)

KoSo _ 1
< QtZZso (p : r)|S(t+’“)_1(1/5)|eXp {— (§M - C) slogp}
< 2%(/@050)”4 exp < CKoSg — 1M —C ) slogp
- 8

t=sg

1
< 2K08g €xXp {(c + 1)koso logp — §MS logp+ Cs logp} < 2¢~ (Mslogp)/16

by taking a sufficiently large M > 0 as n — oco. The proof is thus completed. [
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