Open Access
2020 The limiting behavior of isotonic and convex regression estimators when the model is misspecified
Eunji Lim
Electron. J. Statist. 14(1): 2053-2097 (2020). DOI: 10.1214/20-EJS1714
Abstract

We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d}\rightarrow \mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),\cdots ,(X_{n},Y_{n})$; our estimator $\hat{g}_{n}$ is the minimizer of $\sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $g\in \mathcal{G}$ for some set of functions $\mathcal{G}$. We provide sufficient conditions on the metric entropy of $\mathcal{G}$, under which $\hat{g}_{n}$ converges to $g_{*}$ as $n\rightarrow \infty $, where $g_{*}$ is the minimizer of $\|g-f_{*}\|\triangleq \mathbb{E}(g(X)-f_{*}(X))^{2}$ over $g\in \mathcal{G}$. As corollaries of our theorem, we establish $\|\hat{g}_{n}-g_{*}\|\rightarrow 0$ as $n\rightarrow \infty $ when $\mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $\|\hat{g}_{n}-g_{*}\|$ and the metric entropy of $\mathcal{G}$. As special cases of our finding, we compute the convergence rate of $\|\hat{g}_{n}-g_{*}\|^{2}$ when $\mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions.

References

1.

[1] Bacchetti, P. (1989). Additive isotonic models., J. Amer. Statist. Assoc. 84 289–294.[1] Bacchetti, P. (1989). Additive isotonic models., J. Amer. Statist. Assoc. 84 289–294.

2.

[2] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log–concave density., Ann. Statist. 37 1299–1331. 1160.62008 10.1214/08-AOS609 euclid.aos/1239369023[2] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log–concave density., Ann. Statist. 37 1299–1331. 1160.62008 10.1214/08-AOS609 euclid.aos/1239369023

3.

[3] Balabdaoui, F., Jankowski, H., Rufibach, K. and Pavlides, M. (2013). Asymptotics of the discrete log–concave maximum likelihood estimator and related applications., J. R. Stat. Soc. Ser. B Stat. Methodol. 75 769–790. 1411.62119 10.1111/rssb.12011[3] Balabdaoui, F., Jankowski, H., Rufibach, K. and Pavlides, M. (2013). Asymptotics of the discrete log–concave maximum likelihood estimator and related applications., J. R. Stat. Soc. Ser. B Stat. Methodol. 75 769–790. 1411.62119 10.1111/rssb.12011

4.

[4] Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions., Ann. Statist. 29 1699–1731. 1043.62037 10.1214/aos/1015345959 euclid.aos/1015345959[4] Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions., Ann. Statist. 29 1699–1731. 1043.62037 10.1214/aos/1015345959 euclid.aos/1015345959

5.

[5] Baraud, Y., Huet, S. and Laurent, B. (2005). Testing convex hypotheses on the mean of a Gaussian vector. Application to testing qualitative hypotheses on a regression function., Ann. Statist. 33 214–257. 1065.62109 10.1214/009053604000000896 euclid.aos/1112967705[5] Baraud, Y., Huet, S. and Laurent, B. (2005). Testing convex hypotheses on the mean of a Gaussian vector. Application to testing qualitative hypotheses on a regression function., Ann. Statist. 33 214–257. 1065.62109 10.1214/009053604000000896 euclid.aos/1112967705

6.

[6] Barlow, R. E., Bartholomew, D. J., Bremmer, J. M. and Brunk, H. D. (1972)., Statistical Inference under Order Restrictions. Wiley, New York.[6] Barlow, R. E., Bartholomew, D. J., Bremmer, J. M. and Brunk, H. D. (1972)., Statistical Inference under Order Restrictions. Wiley, New York.

7.

[7] Bartholomew, D. J. (1959). A test of homogeneity for ordered alternatives., Biometrika 46 36–48. 0087.14202 10.1093/biomet/46.1-2.36[7] Bartholomew, D. J. (1959). A test of homogeneity for ordered alternatives., Biometrika 46 36–48. 0087.14202 10.1093/biomet/46.1-2.36

8.

[8] Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression., Ann. Statist. 46 745–780. 1408.62066 10.1214/17-AOS1566 euclid.aos/1522742435[8] Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression., Ann. Statist. 46 745–780. 1408.62066 10.1214/17-AOS1566 euclid.aos/1522742435

9.

[9] Bellec, P. C. and Tsybakov, A. B. (2015). Sharp oracle bounds for monotone and convex regression through aggregation., Journal of Machine Learning Research 16 1879–1892. 1351.62088[9] Bellec, P. C. and Tsybakov, A. B. (2015). Sharp oracle bounds for monotone and convex regression through aggregation., Journal of Machine Learning Research 16 1879–1892. 1351.62088

10.

[10] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators., Probab. Theory Related Fields 97 113–150. 0805.62037 10.1007/BF01199316[10] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators., Probab. Theory Related Fields 97 113–150. 0805.62037 10.1007/BF01199316

11.

[11] Bronshtein, E. M. (1976). $\epsilon $-entropy of convex sets and functions., Siberian Math. J. 17 393–398.[11] Bronshtein, E. M. (1976). $\epsilon $-entropy of convex sets and functions., Siberian Math. J. 17 393–398.

12.

[12] Brunk, H. D. (1955). Maximum Likelihood estimates of monotone parameters., Ann. Math. Statist. 26 607–616. 0066.38503 10.1214/aoms/1177728420 euclid.aoms/1177728420[12] Brunk, H. D. (1955). Maximum Likelihood estimates of monotone parameters., Ann. Math. Statist. 26 607–616. 0066.38503 10.1214/aoms/1177728420 euclid.aoms/1177728420

13.

[13] Cator, E. (2011). Adaptivity and optimality of the monotone least-squares estimator., Bernoulli 17 714–735. MR2787612 1345.62066 10.3150/10-BEJ289 euclid.bj/1302009244[13] Cator, E. (2011). Adaptivity and optimality of the monotone least-squares estimator., Bernoulli 17 714–735. MR2787612 1345.62066 10.3150/10-BEJ289 euclid.bj/1302009244

14.

[14] Chatterjee, S. (2014). A new perspective on least squares under convex constraint., Ann. Statist. 42 2340–2381. 1302.62053 10.1214/14-AOS1254 euclid.aos/1413810730[14] Chatterjee, S. (2014). A new perspective on least squares under convex constraint., Ann. Statist. 42 2340–2381. 1302.62053 10.1214/14-AOS1254 euclid.aos/1413810730

15.

[15] Chatterjee, S. (2016). An improved global risk bound in concave regression., Electron. J. Stat. 10 1608–1629. 1349.62126 10.1214/16-EJS1151[15] Chatterjee, S. (2016). An improved global risk bound in concave regression., Electron. J. Stat. 10 1608–1629. 1349.62126 10.1214/16-EJS1151

16.

[16] Chatterjee, S., Guntuboyina, A. and Sen, B. (2015). On risk bounds in isotonic and other shape restricted regression problems., Ann. Statist. 43 1774–1800. 1317.62032 10.1214/15-AOS1324 euclid.aos/1434546222[16] Chatterjee, S., Guntuboyina, A. and Sen, B. (2015). On risk bounds in isotonic and other shape restricted regression problems., Ann. Statist. 43 1774–1800. 1317.62032 10.1214/15-AOS1324 euclid.aos/1434546222

17.

[17] Chatterjee, S., Guntuboyina, A. and Sen, B. (2018). On matrix estimation under monotonicity constraints., Bernoulli 24 1072-1100. 1419.62135 10.3150/16-BEJ865 euclid.bj/1505980890[17] Chatterjee, S., Guntuboyina, A. and Sen, B. (2018). On matrix estimation under monotonicity constraints., Bernoulli 24 1072-1100. 1419.62135 10.3150/16-BEJ865 euclid.bj/1505980890

18.

[18] Chen, Y. and Samworth, R. J. (2016). Generalized additive and index models with shape constraints., J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 729–754. MR3534348 1414.62153 10.1111/rssb.12137[18] Chen, Y. and Samworth, R. J. (2016). Generalized additive and index models with shape constraints., J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 729–754. MR3534348 1414.62153 10.1111/rssb.12137

19.

[19] Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density., Electron. J. Stat. 4 254–270. 1329.62183 10.1214/09-EJS505[19] Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density., Electron. J. Stat. 4 254–270. 1329.62183 10.1214/09-EJS505

20.

[20] Cule, M. L., Samworth, R. J. and Stewart, M. I. (2010). Maximum likelihood estimation of a multi-dimensional log-concave density (with discussion)., J. Roy. Statist. Soc. Ser. B 72 545–600. 1411.62055 10.1111/j.1467-9868.2010.00753.x[20] Cule, M. L., Samworth, R. J. and Stewart, M. I. (2010). Maximum likelihood estimation of a multi-dimensional log-concave density (with discussion)., J. Roy. Statist. Soc. Ser. B 72 545–600. 1411.62055 10.1111/j.1467-9868.2010.00753.x

21.

[21] Donoho, D. L. (1990). Gelfand $n$–widths and the method of least squares. Technical report, Dept. Statistics, Univ. California, Berkeley.[21] Donoho, D. L. (1990). Gelfand $n$–widths and the method of least squares. Technical report, Dept. Statistics, Univ. California, Berkeley.

22.

[22] Dümbgen, L., Freitag–Wolf, S. and Jongbloed, G. (2006). Estimating a unimodal distribution from interval–censored data., J. Amer. Statist. Assoc. 101 1094–1106. 1120.62313 10.1198/016214506000000032[22] Dümbgen, L., Freitag–Wolf, S. and Jongbloed, G. (2006). Estimating a unimodal distribution from interval–censored data., J. Amer. Statist. Assoc. 101 1094–1106. 1120.62313 10.1198/016214506000000032

23.

[23] Dümbgen, L., Rufibach, K. and Schuhmacher, D. (2014). Maximum–likelihood estimation of a log-concave density based on censored data., Electron. J. Stat. 8 1405–1437. 1298.62062 10.1214/14-EJS930[23] Dümbgen, L., Rufibach, K. and Schuhmacher, D. (2014). Maximum–likelihood estimation of a log-concave density based on censored data., Electron. J. Stat. 8 1405–1437. 1298.62062 10.1214/14-EJS930

24.

[24] Dümbgen, L., Samworth, R. and Schuhmacher, D. (2011). Approximation by log-concave distributions, with applications to regression., Ann. Statist. 39 702–730. 1216.62023 10.1214/10-AOS853 euclid.aos/1299680952[24] Dümbgen, L., Samworth, R. and Schuhmacher, D. (2011). Approximation by log-concave distributions, with applications to regression., Ann. Statist. 39 702–730. 1216.62023 10.1214/10-AOS853 euclid.aos/1299680952

25.

[25] Dümbgen, L., Wellner, J. A. and Wolff, M. (2016). A law of the iterated logarithm for Grenander’s estimator., Stochastic Process. Appl. 126 3854–3864. 1351.60032 10.1016/j.spa.2016.04.012[25] Dümbgen, L., Wellner, J. A. and Wolff, M. (2016). A law of the iterated logarithm for Grenander’s estimator., Stochastic Process. Appl. 126 3854–3864. 1351.60032 10.1016/j.spa.2016.04.012

26.

[26] Durot, C. (2007). On the $L_p$–error of monotonicity constrained estimators., Ann. Statist. 35 1080–1104. 1129.62024 10.1214/009053606000001497 euclid.aos/1185303999[26] Durot, C. (2007). On the $L_p$–error of monotonicity constrained estimators., Ann. Statist. 35 1080–1104. 1129.62024 10.1214/009053606000001497 euclid.aos/1185303999

27.

[27] Durot, C. (2008). Monotone nonparametric regression with random design., Math. Methods Statist. 17 327–341. 1231.62066 10.3103/S1066530708040042[27] Durot, C. (2008). Monotone nonparametric regression with random design., Math. Methods Statist. 17 327–341. 1231.62066 10.3103/S1066530708040042

28.

[28] Dykstra, R. L. (1983). An algorithm for restricted least squares regression., J. Amer. Statist. Assoc. 78 837–842. 0535.62063 10.1080/01621459.1983.10477029[28] Dykstra, R. L. (1983). An algorithm for restricted least squares regression., J. Amer. Statist. Assoc. 78 837–842. 0535.62063 10.1080/01621459.1983.10477029

29.

[29] Fraser, D. A. S. and Massam, H. (1989). A mixed primal-dual bases algorithm for regression under inequality constraints. Application to concave regression., Scand. J. Statist. 16 65–74. 0672.62077[29] Fraser, D. A. S. and Massam, H. (1989). A mixed primal-dual bases algorithm for regression under inequality constraints. Application to concave regression., Scand. J. Statist. 16 65–74. 0672.62077

30.

[30] Gao, F. and Wellner, J. A. (2007). Entropy estimate for high-dimensional monotonic functions., J. Multivariate Anal. 98 1751–1764. 1221.62008 10.1016/j.jmva.2006.09.003[30] Gao, F. and Wellner, J. A. (2007). Entropy estimate for high-dimensional monotonic functions., J. Multivariate Anal. 98 1751–1764. 1221.62008 10.1016/j.jmva.2006.09.003

31.

[31] Gao, F. and Wellner, J. A. (2017). Entropy of convex functions on $\mathbbR^d$., Constr. Approx. 46 565–592. 1381.52016 10.1007/s00365-017-9387-1[31] Gao, F. and Wellner, J. A. (2017). Entropy of convex functions on $\mathbbR^d$., Constr. Approx. 46 565–592. 1381.52016 10.1007/s00365-017-9387-1

32.

[32] Ghosal, S., Sen, A. and van der Vaart, A. W. (2000). Testing monotonicity of regression., Ann. Statist. 28 1054–1082. 1105.62337 10.1214/aos/1016218228 euclid.aos/1015956707[32] Ghosal, S., Sen, A. and van der Vaart, A. W. (2000). Testing monotonicity of regression., Ann. Statist. 28 1054–1082. 1105.62337 10.1214/aos/1016218228 euclid.aos/1015956707

33.

[33] Grant, M. and Boyd, S. (2014). CVX: Matlab Software for Disciplined Convex Programming, version 2.1.,  http://cvxr.com/cvx.[33] Grant, M. and Boyd, S. (2014). CVX: Matlab Software for Disciplined Convex Programming, version 2.1.,  http://cvxr.com/cvx.

34.

[34] Grenander, U. (1957). On the theory of mortality measurement: II., Skand. Aktuarietidskr. 39 125–153. 0077.33715[34] Grenander, U. (1957). On the theory of mortality measurement: II., Skand. Aktuarietidskr. 39 125–153. 0077.33715

35.

[35] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterization and asymptotic theory., Ann. Statist. 29 1653–1698. 1043.62027 10.1214/aos/1015345958 euclid.aos/1015345958[35] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterization and asymptotic theory., Ann. Statist. 29 1653–1698. 1043.62027 10.1214/aos/1015345958 euclid.aos/1015345958

36.

[36] Groeneboom, P. and Jongbloed, G. (2010). Generalized continuous isotonic regression., Statist. Probab. Lett. 80 248–253. 1180.62140 10.1016/j.spl.2009.10.014[36] Groeneboom, P. and Jongbloed, G. (2010). Generalized continuous isotonic regression., Statist. Probab. Lett. 80 248–253. 1180.62140 10.1016/j.spl.2009.10.014

37.

[37] Guntuboyina, A. and Sen, B. (2013). Global risk bounds and adaptation in univariate convex regression., Probab. Theory Related Fields 1–33. 1327.62255 10.1007/s00440-014-0595-3[37] Guntuboyina, A. and Sen, B. (2013). Global risk bounds and adaptation in univariate convex regression., Probab. Theory Related Fields 1–33. 1327.62255 10.1007/s00440-014-0595-3

38.

[38] Hall, P. and Heckman, N. E. (2000). Testing for monotonicity of a regression mean by calibrating for linear functions., Ann. Statist. 28 20–39. 1106.62324 10.1214/aos/1016120363 euclid.aos/1016120363[38] Hall, P. and Heckman, N. E. (2000). Testing for monotonicity of a regression mean by calibrating for linear functions., Ann. Statist. 28 20–39. 1106.62324 10.1214/aos/1016120363 euclid.aos/1016120363

39.

[39] Hall, P. and Huang, L. S. (2001). Nonparametric kernel regression subject to monotonicity constraints., Ann. Statist. 29 624–647. 1012.62030 10.1214/aos/1009210683 euclid.aos/1009210683[39] Hall, P. and Huang, L. S. (2001). Nonparametric kernel regression subject to monotonicity constraints., Ann. Statist. 29 624–647. 1012.62030 10.1214/aos/1009210683 euclid.aos/1009210683

40.

[40] Han, Q. and Wellner, J. A. (2016). Multivariate convex regression: Global risk bounds and adaptation., arXiv:1601.06844.[40] Han, Q. and Wellner, J. A. (2016). Multivariate convex regression: Global risk bounds and adaptation., arXiv:1601.06844.

41.

[41] Han, Q., Wang, T., Chatterjee, S. and Samworth, R. J. (2017). Isotonic regression in general dimensions., arxiv:1708.09468. 07114918 10.1214/18-AOS1753 euclid.aos/1564797853[41] Han, Q., Wang, T., Chatterjee, S. and Samworth, R. J. (2017). Isotonic regression in general dimensions., arxiv:1708.09468. 07114918 10.1214/18-AOS1753 euclid.aos/1564797853

42.

[42] Hannah, L. A. and Dunson, D. B. (2013). Multivariate convex regression with adaptive partitioning., J. Mach. Learn. Res. 14 3261–3294. 1318.62225[42] Hannah, L. A. and Dunson, D. B. (2013). Multivariate convex regression with adaptive partitioning., J. Mach. Learn. Res. 14 3261–3294. 1318.62225

43.

[43] Hanson, D. L., Pledger, G. and Wright, F. T. (1973). On consistency in monotonic regression., Ann. Statist. 1 401–421. 0259.62037 10.1214/aos/1176342407 euclid.aos/1176342407[43] Hanson, D. L., Pledger, G. and Wright, F. T. (1973). On consistency in monotonic regression., Ann. Statist. 1 401–421. 0259.62037 10.1214/aos/1176342407 euclid.aos/1176342407

44.

[44] Hanson, D. L. and Pledger, G. (1976). Consistency in concave regression., Ann. Statist. 4 1038–1050. 0341.62034 10.1214/aos/1176343640 euclid.aos/1176343640[44] Hanson, D. L. and Pledger, G. (1976). Consistency in concave regression., Ann. Statist. 4 1038–1050. 0341.62034 10.1214/aos/1176343640 euclid.aos/1176343640

45.

[45] Hastie, T. J. and Tibshirani, R. J. (1990)., Generalized Additive Models. Chapman & Hall/CRC, London. 0747.62061[45] Hastie, T. J. and Tibshirani, R. J. (1990)., Generalized Additive Models. Chapman & Hall/CRC, London. 0747.62061

46.

[46] Hildreth, C. (1954). Point estimates of ordinates of concave functions., J. Amer. Statist. Assoc. 49 598–619. 0056.38301 10.1080/01621459.1954.10483523[46] Hildreth, C. (1954). Point estimates of ordinates of concave functions., J. Amer. Statist. Assoc. 49 598–619. 0056.38301 10.1080/01621459.1954.10483523

47.

[47] Hull, J. C. (2006)., Options, Futures, and Other Derivatives. Prentice Hall, New Jersey. 1087.91025[47] Hull, J. C. (2006)., Options, Futures, and Other Derivatives. Prentice Hall, New Jersey. 1087.91025

48.

[48] Kim, A. K. H. and Samworth, R. J. (2016). Global rates of convergene in log-concave density estimation., Ann. Statist. 44 2756–2779. 1360.62157 10.1214/16-AOS1480 euclid.aos/1479891634[48] Kim, A. K. H. and Samworth, R. J. (2016). Global rates of convergene in log-concave density estimation., Ann. Statist. 44 2756–2779. 1360.62157 10.1214/16-AOS1480 euclid.aos/1479891634

49.

[49] Koenker, R. and Mizera, I. (2010). Quasi–concave density estimation., Ann. Statist. 38 2998–3027. 1200.62031 10.1214/10-AOS814 euclid.aos/1282315406[49] Koenker, R. and Mizera, I. (2010). Quasi–concave density estimation., Ann. Statist. 38 2998–3027. 1200.62031 10.1214/10-AOS814 euclid.aos/1282315406

50.

[50] Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares., Econometrics J. 11 308–325. 1141.91640 10.1111/j.1368-423X.2008.00239.x[50] Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares., Econometrics J. 11 308–325. 1141.91640 10.1111/j.1368-423X.2008.00239.x

51.

[51] Kyng, R., Rao, A. and Sachdeva, S. (2015). Fast, provable algorithms for isotonic regression in all $l_p$–norms., In Advances in Neural Information Processing Systems 2719–2727.[51] Kyng, R., Rao, A. and Sachdeva, S. (2015). Fast, provable algorithms for isotonic regression in all $l_p$–norms., In Advances in Neural Information Processing Systems 2719–2727.

52.

[52] Lee, C., Johnson, A. L., Moreno-Centeno, E. and Kuosmanen, T. (2013). A More Efficient Algorithm for Convex Nonparametric Least Squares., European J. Oper. Res. 227 391–400. 1292.90234 10.1016/j.ejor.2012.11.054[52] Lee, C., Johnson, A. L., Moreno-Centeno, E. and Kuosmanen, T. (2013). A More Efficient Algorithm for Convex Nonparametric Least Squares., European J. Oper. Res. 227 391–400. 1292.90234 10.1016/j.ejor.2012.11.054

53.

[53] Lim, E. and Glynn, P. W. (2012). Consistency of Multidimensional Convex Regression., Oper. Res. 60 196–208. 1342.62064 10.1287/opre.1110.1007[53] Lim, E. and Glynn, P. W. (2012). Consistency of Multidimensional Convex Regression., Oper. Res. 60 196–208. 1342.62064 10.1287/opre.1110.1007

54.

[54] Luenberger, D. G. (1968)., Optimization by Vector Space Methods. John Wiley & Sons, Inc., New York.[54] Luenberger, D. G. (1968)., Optimization by Vector Space Methods. John Wiley & Sons, Inc., New York.

55.

[55] Makowski, G. G. (1977). Consistency of an estimator of doubly nondecreasing regression functions., Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 39 263–268. 0371.62054 10.1007/BF01877494[55] Makowski, G. G. (1977). Consistency of an estimator of doubly nondecreasing regression functions., Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 39 263–268. 0371.62054 10.1007/BF01877494

56.

[56] Mammen, E. and Yu, K. (2007). Additive isotone regression., IMS Lecture Notes–Monograph Series Asymptotics: Particles, Processes, and Inverse Problems 55 179–195. 1176.62035[56] Mammen, E. and Yu, K. (2007). Additive isotone regression., IMS Lecture Notes–Monograph Series Asymptotics: Particles, Processes, and Inverse Problems 55 179–195. 1176.62035

57.

[57] Meyer, M. C. (2013). Semi–parametric additive constrained regression., J. Nonparametr. Stat. 25 715–730. 1416.62223 10.1080/10485252.2013.797577[57] Meyer, M. C. (2013). Semi–parametric additive constrained regression., J. Nonparametr. Stat. 25 715–730. 1416.62223 10.1080/10485252.2013.797577

58.

[58] Meyer, M. and Woodroofe, M. (2000). On the degrees of freedom in shape–restricted regression., Ann. Statist. 28 1083–1104. 1105.62340 10.1214/aos/1015956708 euclid.aos/1015956708[58] Meyer, M. and Woodroofe, M. (2000). On the degrees of freedom in shape–restricted regression., Ann. Statist. 28 1083–1104. 1105.62340 10.1214/aos/1015956708 euclid.aos/1015956708

59.

[59] Nemirovski, A. M., Polyak, B. T. and Tsybakov, A. B. (1985). Rate of convergence of nonparametric estimators of maximum–likelihood type., Problems of Information Transmission 21 258–272. 0616.62048[59] Nemirovski, A. M., Polyak, B. T. and Tsybakov, A. B. (1985). Rate of convergence of nonparametric estimators of maximum–likelihood type., Problems of Information Transmission 21 258–272. 0616.62048

60.

[60] Patilea, V. (2001). Convex models, MLE and misspecification., Ann. Statist. 29 94–123. 1029.62020 10.1214/aos/996986503 euclid.aos/996986503[60] Patilea, V. (2001). Convex models, MLE and misspecification., Ann. Statist. 29 94–123. 1029.62020 10.1214/aos/996986503 euclid.aos/996986503

61.

[61] Rao, B. L. S. P. (1969). Estimation of a unimodel density., Sankhyā Ser. A 31 23–36.[61] Rao, B. L. S. P. (1969). Estimation of a unimodel density., Sankhyā Ser. A 31 23–36.

62.

[62] Robertson, T. and Wright, F. T. (1975). Consistency in generalized isotonic regression., Ann. Statist. 3 350–362. 0305.62044 10.1214/aos/1176343061 euclid.aos/1176343061[62] Robertson, T. and Wright, F. T. (1975). Consistency in generalized isotonic regression., Ann. Statist. 3 350–362. 0305.62044 10.1214/aos/1176343061 euclid.aos/1176343061

63.

[63] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988)., Order Restricted Statistical Inference (Wiley Series in Probability and Mathematical Statistics). John Wiley & Sons, Chichester.[63] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988)., Order Restricted Statistical Inference (Wiley Series in Probability and Mathematical Statistics). John Wiley & Sons, Chichester.

64.

[64] Schuhmacher, D. and Dümbgen, L. (2010). Consistency of multivariate log-concave density estimators., Statist. Probab. Lett. 80 376–380. 1181.62048 10.1016/j.spl.2009.11.013[64] Schuhmacher, D. and Dümbgen, L. (2010). Consistency of multivariate log-concave density estimators., Statist. Probab. Lett. 80 376–380. 1181.62048 10.1016/j.spl.2009.11.013

65.

[65] Seijo, E. and Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex regression function., Ann. Statist. 39 1633–1657. 1220.62044 10.1214/10-AOS852 euclid.aos/1311600278[65] Seijo, E. and Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex regression function., Ann. Statist. 39 1633–1657. 1220.62044 10.1214/10-AOS852 euclid.aos/1311600278

66.

[66] Sen, P. K. and Silvapulle, M. J. (2002). An appraisal of some aspects of statistical inference under inequality constraints., J. Statist. Plann. Inference 107 3–43. 1030.62023 10.1016/S0378-3758(02)00242-2[66] Sen, P. K. and Silvapulle, M. J. (2002). An appraisal of some aspects of statistical inference under inequality constraints., J. Statist. Plann. Inference 107 3–43. 1030.62023 10.1016/S0378-3758(02)00242-2

67.

[67] Seregin, A. and Wellner, J. A. (2010). Nonparametric estimation of multivariate convex-transformed densities., Ann. Statist. 38 3751–3781. 1204.62058 10.1214/10-AOS840 euclid.aos/1291126972[67] Seregin, A. and Wellner, J. A. (2010). Nonparametric estimation of multivariate convex-transformed densities., Ann. Statist. 38 3751–3781. 1204.62058 10.1214/10-AOS840 euclid.aos/1291126972

68.

[68] Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis., Int. Stat. Rev. 56 49–62. 0661.62042 10.2307/1403361[68] Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis., Int. Stat. Rev. 56 49–62. 0661.62042 10.2307/1403361

69.

[69] Stout, Q. F. (2015). Isotonic regression for multiple independent variables., Algorithmica 71 450–470. 1312.62084 10.1007/s00453-013-9814-z[69] Stout, Q. F. (2015). Isotonic regression for multiple independent variables., Algorithmica 71 450–470. 1312.62084 10.1007/s00453-013-9814-z

70.

[70] van de Geer, S. A. (1987). A new approach to least-squares estimation, with applications., Ann. Statist. 15 587–602. 0625.62046 10.1214/aos/1176350362 euclid.aos/1176350362[70] van de Geer, S. A. (1987). A new approach to least-squares estimation, with applications., Ann. Statist. 15 587–602. 0625.62046 10.1214/aos/1176350362 euclid.aos/1176350362

71.

[71] van de Geer, S. A. (1990). Estimating a regression function., Ann. Statist. 18 907–924. 0709.62040 10.1214/aos/1176347632 euclid.aos/1176347632[71] van de Geer, S. A. (1990). Estimating a regression function., Ann. Statist. 18 907–924. 0709.62040 10.1214/aos/1176347632 euclid.aos/1176347632

72.

[72] van de Geer, S. A. (1993). Hellinger–consistency of certain nonparametric maximum likelihood estimators., Ann. Statist. 21 14–44. 0779.62033 10.1214/aos/1176349013 euclid.aos/1176349013[72] van de Geer, S. A. (1993). Hellinger–consistency of certain nonparametric maximum likelihood estimators., Ann. Statist. 21 14–44. 0779.62033 10.1214/aos/1176349013 euclid.aos/1176349013

73.

[73] van de Geer, S. (2000)., Applications of Empirical Process Theory, Cambridge series in statistical and probabilistic mathematics ed. Cambridge University Press, Cambridge.[73] van de Geer, S. (2000)., Applications of Empirical Process Theory, Cambridge series in statistical and probabilistic mathematics ed. Cambridge University Press, Cambridge.

74.

[74] van der Vaart, A. W. and Wellner, J. A. (1996)., Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York. 0862.60002[74] van der Vaart, A. W. and Wellner, J. A. (1996)., Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York. 0862.60002

75.

[75] Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates., Ann. Statist. 9 443–448. MR606630 0471.62062 10.1214/aos/1176345411 euclid.aos/1176345411[75] Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates., Ann. Statist. 9 443–448. MR606630 0471.62062 10.1214/aos/1176345411 euclid.aos/1176345411

76.

[76] Yatchew, A. J. (1992). Nonparametric regression tests based on least squares., Econom. Theory 8 435–451.[76] Yatchew, A. J. (1992). Nonparametric regression tests based on least squares., Econom. Theory 8 435–451.

77.

[77] Zhang, C. H. (2002). Risk bounds in isotonic regression., Ann. Statist. 30 528–555. 1012.62045 10.1214/aos/1021379864 euclid.aos/1021379864[77] Zhang, C. H. (2002). Risk bounds in isotonic regression., Ann. Statist. 30 528–555. 1012.62045 10.1214/aos/1021379864 euclid.aos/1021379864
Eunji Lim "The limiting behavior of isotonic and convex regression estimators when the model is misspecified," Electronic Journal of Statistics 14(1), 2053-2097, (2020). https://doi.org/10.1214/20-EJS1714
Received: 1 July 2019; Published: 2020
Vol.14 • No. 1 • 2020
Back to Top