Open Access
2018 Regularity properties and simulations of Gaussian random fields on the sphere cross time
Jorge Clarke De la Cerda, Alfredo Alegría, Emilio Porcu
Electron. J. Statist. 12(1): 399-426 (2018). DOI: 10.1214/18-EJS1393
Abstract

We study the regularity properties of Gaussian fields defined over spheres cross time. In particular, we consider two alternative spectral decompositions for a Gaussian field on $\mathbb{S}^{d}\times \mathbb{R}$. For each decomposition, we establish regularity properties through Sobolev and interpolation spaces. We then propose a simulation method and study its level of accuracy in the $L^{2}$ sense. The method turns to be both fast and efficient.

References

1.

[1] Adams, R. A. and Fournier, J. F. (2003), Sobolev Spaces. Second edition. Pure and Applied Mathematics (Amsterdam). 1098.46001[1] Adams, R. A. and Fournier, J. F. (2003), Sobolev Spaces. Second edition. Pure and Applied Mathematics (Amsterdam). 1098.46001

2.

[2] Bateman, H. and Erdélyi, A. (1953), Higher Transcendental Functions. Vol. I - II. McGraw-Hill, New York.[2] Bateman, H. and Erdélyi, A. (1953), Higher Transcendental Functions. Vol. I - II. McGraw-Hill, New York.

3.

[3] Berg, C. and Porcu, E. (2016), From Schoenberg coefficients to Schoenberg functions., Constr. Approx., 1–25. 1362.43004 10.1007/s00365-016-9323-9[3] Berg, C. and Porcu, E. (2016), From Schoenberg coefficients to Schoenberg functions., Constr. Approx., 1–25. 1362.43004 10.1007/s00365-016-9323-9

4.

[4] Bergh, J. and Löfström J. (1976), Interpolation Spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York. MR0482275[4] Bergh, J. and Löfström J. (1976), Interpolation Spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York. MR0482275

5.

[5] Bonan, S. S. and Clark, D. S. (1990), Estimates of the Hermite and the Freud polynomials., J. Approx. Theory, 63, 210–224. 0716.42018 10.1016/0021-9045(90)90104-X[5] Bonan, S. S. and Clark, D. S. (1990), Estimates of the Hermite and the Freud polynomials., J. Approx. Theory, 63, 210–224. 0716.42018 10.1016/0021-9045(90)90104-X

6.

[6] Christakos, G. (2005), Random Field Models in Earth Sciences. Elsevier[6] Christakos, G. (2005), Random Field Models in Earth Sciences. Elsevier

7.

[7] Christakos, G. and Hristopulos, T. (1998), Spatiotemporal Environmental Health Modelling: a Tractatus Stochasticus. (With a foreword by William L. Roper). Kluwer Academic Publishers, Boston, MA. 0920.92028[7] Christakos, G. and Hristopulos, T. (1998), Spatiotemporal Environmental Health Modelling: a Tractatus Stochasticus. (With a foreword by William L. Roper). Kluwer Academic Publishers, Boston, MA. 0920.92028

8.

[8] Christensen, J. P. R. (1970), On some measures analogous to Haar measure., Math. Scand., 26, 103–106. 0191.43103 10.7146/math.scand.a-10969[8] Christensen, J. P. R. (1970), On some measures analogous to Haar measure., Math. Scand., 26, 103–106. 0191.43103 10.7146/math.scand.a-10969

9.

[9] Dai, F. and Xu, Y. (2013), Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York. 1275.42001[9] Dai, F. and Xu, Y. (2013), Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York. 1275.42001

10.

[10] Dimitrakopoulos, R. (1994), Geostatistics for the Next Century. Springer Netherlands.[10] Dimitrakopoulos, R. (1994), Geostatistics for the Next Century. Springer Netherlands.

11.

[11] Ferreira, J. C. and Menegatto, V. A. (2009), Eigenvalues of integral operators defined by smooth positive definite kernels., Integral Equations Operator Theory, 64, 61–81. 1173.45001 10.1007/s00020-009-1680-3[11] Ferreira, J. C. and Menegatto, V. A. (2009), Eigenvalues of integral operators defined by smooth positive definite kernels., Integral Equations Operator Theory, 64, 61–81. 1173.45001 10.1007/s00020-009-1680-3

12.

[12] Ferreira, J. C. and Menegatto, V. A. (2013), Positive definiteness, reproducing kernel Hilbert spaces and beyond., Ann. Funct. Anal. 4, 64–88. 1275.47047 10.15352/afa/1399899838[12] Ferreira, J. C. and Menegatto, V. A. (2013), Positive definiteness, reproducing kernel Hilbert spaces and beyond., Ann. Funct. Anal. 4, 64–88. 1275.47047 10.15352/afa/1399899838

13.

[13] Gneiting, T. (2002), Nonseparable, stationary covariance functions for Space-Time data., J. Amer. Statist. Assoc., 97, 590–600. 1073.62593 10.1198/016214502760047113[13] Gneiting, T. (2002), Nonseparable, stationary covariance functions for Space-Time data., J. Amer. Statist. Assoc., 97, 590–600. 1073.62593 10.1198/016214502760047113

14.

[14] Gneiting, T. (2013), Strictly and non-strictly positive definite functions on spheres., Bernoulli, 19, 1327–1349. 1283.62200 10.3150/12-BEJSP06 euclid.bj/1377612854[14] Gneiting, T. (2013), Strictly and non-strictly positive definite functions on spheres., Bernoulli, 19, 1327–1349. 1283.62200 10.3150/12-BEJSP06 euclid.bj/1377612854

15.

[15] Jones, R. H. (1963), Stochastic processes on a sphere., Ann. Math. Statist., 34, 213–218. 0202.46702 10.1214/aoms/1177704257 euclid.aoms/1177704257[15] Jones, R. H. (1963), Stochastic processes on a sphere., Ann. Math. Statist., 34, 213–218. 0202.46702 10.1214/aoms/1177704257 euclid.aoms/1177704257

16.

[16] Kozachenko, Yu. V. and Kozachenko, L. F. (2001), Modelling Gaussian isotropic random fields on a sphere., J. Math. Sci., 2, 3751–3757.[16] Kozachenko, Yu. V. and Kozachenko, L. F. (2001), Modelling Gaussian isotropic random fields on a sphere., J. Math. Sci., 2, 3751–3757.

17.

[17] Lang, A. and Schwab, C. (2015), Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations., Ann. Appl. Probab., 25, 3047–3094. 1328.60126 10.1214/14-AAP1067 euclid.aoap/1443703769[17] Lang, A. and Schwab, C. (2015), Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations., Ann. Appl. Probab., 25, 3047–3094. 1328.60126 10.1214/14-AAP1067 euclid.aoap/1443703769

18.

[18] Marinucci, D. and Peccati, G. (2011), Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series, 389. Cambridge University Press, Cambridge. 1260.60004[18] Marinucci, D. and Peccati, G. (2011), Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series, 389. Cambridge University Press, Cambridge. 1260.60004

19.

[19] Morimoto, Mitsuo (1998), Analytic Functionals on the Sphere. Translations of Mathematical Monographs, 178. American Mathematical Society, Providence, RI.,[19] Morimoto, Mitsuo (1998), Analytic Functionals on the Sphere. Translations of Mathematical Monographs, 178. American Mathematical Society, Providence, RI.,

20.

[20] Porcu, E. Alegría, A. and Furrer R. (2017), Modeling temporally evolving and spatially globally dependent data., arXiv:1706.09233v1[20] Porcu, E. Alegría, A. and Furrer R. (2017), Modeling temporally evolving and spatially globally dependent data., arXiv:1706.09233v1

21.

[21] Porcu, E. Bevilacqua, M. and Genton, M. (2015), Spatio-Temporal covariance and cross-covariance functions of the great circle distance on a sphere., J. Amer. Statist. Assoc., 111, 888–898.[21] Porcu, E. Bevilacqua, M. and Genton, M. (2015), Spatio-Temporal covariance and cross-covariance functions of the great circle distance on a sphere., J. Amer. Statist. Assoc., 111, 888–898.

22.

[22] Sasvári, Z. (1994), Positive Definite and Definitizable Functions. Mathematical Topics, 2. Akademie Verlag, Berlin.[22] Sasvári, Z. (1994), Positive Definite and Definitizable Functions. Mathematical Topics, 2. Akademie Verlag, Berlin.

23.

[23] Schoenberg, I. J. (1942), Positive definite functions on spheres., Duke Math. J., 9, 96–108. 0063.06808 10.1215/S0012-7094-42-00908-6 euclid.dmj/1077493072[23] Schoenberg, I. J. (1942), Positive definite functions on spheres., Duke Math. J., 9, 96–108. 0063.06808 10.1215/S0012-7094-42-00908-6 euclid.dmj/1077493072

24.

[24] Stein, M. (2005), Space-time covariance functions., J. Amer. Statist. Assoc., 100, 310–321. 1117.62431 10.1198/016214504000000854[24] Stein, M. (2005), Space-time covariance functions., J. Amer. Statist. Assoc., 100, 310–321. 1117.62431 10.1198/016214504000000854

25.

[25] Triebel, H. (1983), Theory of Function Spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel.[25] Triebel, H. (1983), Theory of Function Spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel.

26.

[26] Triebel, H. (1999), Interpolation Theory, Function Spaces, Differential Operators. Wiley. 0920.46027[26] Triebel, H. (1999), Interpolation Theory, Function Spaces, Differential Operators. Wiley. 0920.46027

27.

[27] Zastavnyi, V. P. and Porcu, E. (2011), Characterization theorems for the Gneiting class of space-time covariances., Bernoulli, 17, 456–465. 1284.62592 10.3150/10-BEJ278 euclid.bj/1297173850[27] Zastavnyi, V. P. and Porcu, E. (2011), Characterization theorems for the Gneiting class of space-time covariances., Bernoulli, 17, 456–465. 1284.62592 10.3150/10-BEJ278 euclid.bj/1297173850
Jorge Clarke De la Cerda, Alfredo Alegría, and Emilio Porcu "Regularity properties and simulations of Gaussian random fields on the sphere cross time," Electronic Journal of Statistics 12(1), 399-426, (2018). https://doi.org/10.1214/18-EJS1393
Received: 1 January 2017; Published: 2018
Vol.12 • No. 1 • 2018
Back to Top