Translator Disclaimer
2016 Identifiability of directed Gaussian graphical models with one latent source
Dennis Leung, Mathias Drton, Hisayuki Hara
Electron. J. Statist. 10(1): 394-422 (2016). DOI: 10.1214/16-EJS1111

Abstract

We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which correspond to the observed variables. We give a graphical condition that is sufficient for the Jacobian matrix of the parametrization map to be full rank, which entails that the parametrization is generically finite-to-one, a fact that is sometimes also referred to as local identifiability. We also derive a graphical condition that is necessary for such identifiability. Finally, we give a condition under which generic parameter identifiability can be determined from identifiability of a model associated with a subgraph. The power of these criteria is assessed via an exhaustive algebraic computational study for small models with 4, 5, and 6 observable variables, and a simulation study for large models with 25 or 35 observable variables.

Citation

Download Citation

Dennis Leung. Mathias Drton. Hisayuki Hara. "Identifiability of directed Gaussian graphical models with one latent source." Electron. J. Statist. 10 (1) 394 - 422, 2016. https://doi.org/10.1214/16-EJS1111

Information

Received: 1 May 2015; Published: 2016
First available in Project Euclid: 24 February 2016

zbMATH: 1332.62172
MathSciNet: MR3466188
Digital Object Identifier: 10.1214/16-EJS1111

Subjects:
Primary: 62H05, 62H25, 62J05

Rights: Copyright © 2016 The Institute of Mathematical Statistics and the Bernoulli Society

JOURNAL ARTICLE
29 PAGES


SHARE
Vol.10 • No. 1 • 2016
Back to Top