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Abstract: We study parameter identifiability of directed Gaussian graph-
ical models with one latent variable. In the scenario we consider, the latent
variable is a confounder that forms a source node of the graph and is a
parent to all other nodes, which correspond to the observed variables. We
give a graphical condition that is sufficient for the Jacobian matrix of the
parametrization map to be full rank, which entails that the parametriza-
tion is generically finite-to-one, a fact that is sometimes also referred to as
local identifiability. We also derive a graphical condition that is necessary
for such identifiability. Finally, we give a condition under which generic
parameter identifiability can be determined from identifiability of a model
associated with a subgraph. The power of these criteria is assessed via an
exhaustive algebraic computational study for small models with 4, 5, and
6 observable variables, and a simulation study for large models with 25 or
35 observable variables.
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1. Introduction

In this paper we study parameter identifiability in directed Gaussian graphical
models with a latent variable. Our work falls in a line of work where the graphical
representation of causally interpretable latent variable models is used to give
tractable criteria to decide whether parameters can be uniquely recovered from
the joint distribution of the observed variables (Pearl, 2009). Some examples of
prior work in this context are Chen et al. (2014), Drton et al. (2011), Foygel
et al. (2012), Grzebyk et al. (2004), Kuroki and Miyakawa (2004), Kuroki and
Pearl (2014), Stanghellini and Wermuth (2005), Tian (2005), and Tian (2009).
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The setup we consider has a single latent variable appear as a source node
in the directed graph defining the Gaussian model. The resulting models can
be described as follows. Let X1, . . . , Xm be observable variables, and let L be a
hidden variable, and suppose the variables are related by linear equations as

Xv =
∑
w �=v

λwvXw + δvL+ εv, v = 1, . . . ,m,

where λwv, δv are real coefficients quantifying linear relationships, and the εv
are independent mean zero Gaussian noise terms with variances ωv > 0. The
latent variable L is assumed to be standard normal and independent of the noise
terms εv. Letting X = (X1, . . . , Xm)T , ε = (ε1, . . . , εm)T and δ = (δ1, . . . , δm)T ,
we may present the model in the vectorized form

X = ΛTX + δL+ ε, (1.1)

where Λ is the matrix (λwv) with λvv = 0 for all v = 1, . . . ,m. We are then
interested in specific models, in which for certain pairs of nodes w �= v the
coefficient λwv is constrained to zero. In particular, we are interested in recursive
models, that is, models in which the matrix Λ can be brought into strictly upper
triangular form by permuting the indices of the variables (and thus the rows
and columns of Λ). This implies that Im−Λ is invertible, where Im is the m×m
identity matrix. It follows that the observable variate vector X has a m-variate
normal distribution Nm(0,Σ) with covariance matrix

Σ = (Im − ΛT )−1(Ω + δδT )(Im − Λ)−1, (1.2)

where Ω is the diagonal matrix with Ωvv = ωv. For additional background on
graphical models we refer the reader to Lauritzen (1996) and Pearl (2009). We
note that the models we consider also belong to the class of linear structural
equation models (Bollen, 1989).

A Gaussian latent variable model postulating recursive zero structure in the
matrix Λ from (1.1) can be thought of as associated with a graph G = (V,E)
whose vertex set V = {1, . . . ,m} is the index set for the observable variables
X1, . . . , Xm. For two distinct nodes w, v ∈ V , the edge set E includes the di-
rected edge (w, v), denoted as w → v if and only if the model includes λwv as
a free parameter. When the model is recursive, the directed graph G is acyclic
and following common terminology we refer to G as a DAG (for directed acyclic
graph). In this paper, we will then always assume that the nodes are labeled
in topological order, that is, we have V = {1, . . . ,m} and w → v ∈ E only if
w < v.

To emphasize the presence of the latent variable L, one could equivalently
represent the model by an extended DAGG = (V ,E) onm+1 nodes enumerated
as V := {0, 1, . . . ,m}, where the node 0 corresponds to the latent variable L,
and if G = (V,E) is the graph on m nodes representing the model as in the
preceding paragraph, then E = E ∪ {0 → v : v ∈ {1, . . . ,m}}. The edges 0 → v
correspond to the coefficients δv.
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For the DAG G = (V,E), let

RE := {Λ = (λwv) ∈ Rm×m : w → v �∈ E ⇒ λwv = 0}

be the linear space of coefficient matrices, and let diag+m be the set of all m×m
diagonal matrices with a positive diagonal.

Definition 1.1. The Gaussian one latent source model associated with a given
DAG G = (V,E), denoted as N∗(G), is the family of all m-variate normal
distributions Nm(0,Σ) with a covariance matrix of the form

Σ = (Im − ΛT )−1(Ω + δδT )(Im − Λ)−1,

for Λ ∈ RE , Ω ∈ diag+m and δ ∈ Rm.

The model N∗(G) has the parametrization map

φG : (Λ,Ω, δ) �−→ (Im − ΛT )−1(Ω + δδT )(Im − Λ)−1 (1.3)

defined on the set Θ := RE × diag+m ×Rm, which we may also view as an open
subset of R2m+|E|, where |E| is the cardinality of the directed edge set E. Clearly,
the image of φG is in PDm, the cone of positive definite m×m matrices. Note
that since G is acyclic, we have (Im − Λ)−1 = Im + Λ + Λ2 + · · · + Λm−1 and
thus the covariance parametrization φG is a polynomial map.

In this paper we will derive graphical conditions that are sufficient/necessary
for identifiability of the model N∗(G). We begin by clarifying what precisely we
mean by identifiability. The most stringent notion, namely that of global iden-
tifiability, requires φG to be injective on all of Θ. While this notion is important
(Drton et al., 2011), it is too stringent for the setting we consider here. Indeed,
for any triple (Λ,Ω, δ) ∈ Θ, φG(Λ,Ω, δ) = φG(Λ,Ω,−δ), which implies that the
fiber

{(Λ′,Ω′, δ′) ∈ Θ : φG(Λ,Ω, δ) = φG (Λ′,Ω′, δ′)}
always has cardinality ≥ 2. We may account for this symmetry by requiring φG

to be 2-to-1 on all of Θ but this is not enough as there are always some fibers
that are infinite. For instance, it is easy to show that the fiber in the above
display is infinite when δ = 0. As such, it is natural to consider notions of generic
identifiability. Specifically, our contributions will pertain to the notion of generic
finite identifiability, as defined below, that only requires finite identification of
parameters away from a fixed null set in Θ; here a null set is a set of Lebesgue
measure zero. This notion is also referred to as local identifiability in other
related work such as Anderson and Rubin (1956).

Null sets appearing in our work are algebraic sets, where an algebraic set
A ⊂ Rn is the set of common zeros of a collection of multivariate polynomials,
i.e.,

A = {a ∈ Rn : fi(a) = 0, i = 1, . . . , k},
for fi ∈ R[x1, . . . , xn], where R[x1, . . . , xn] is the ring of polynomials in n vari-
ables with coefficients in R. If all polynomials fi are the zero polynomial then
A = Rn. Otherwise, A is a proper subset, A � Rn, and its dimension is then
less than n. In particular, a proper algebraic subset of Rn has measure zero.
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Definition 1.2. Let S be an open subset of Rn, and let f be a map defined on
S. Then f is said to be generically finite-to-one if there exists a proper algebraic
set S̃ ⊂ Rn such that the fiber of s, i.e. the set {s′ ∈ S : f(s′) = f(s)}, is finite
for all s ∈ S \ S̃. Otherwise, f is said to be generically infinite-to-one.

Definition 1.3. The model N∗(G) of a given DAG G = (V,E) is said to be
generically finitely identifiable if its parametrization φG defined on Θ is generi-
cally finite-to-one. We also say the DAG G is generically finitely identifiable for
short.

Hereafter for any map f defined on an open domain S ⊂ Rn, we will use

Ff (s) := {s′ ∈ S : f(s′) = f(s)} (1.4)

to denote the fiber of a point s ∈ S. If T is a subset of S, we will use f |T to
denote the restriction of f to T , in which case for any t ∈ T , we have the fiber

Ff |T (t) = {t′ ∈ T : f(t′) = f(t)}.

The term “generic point” will refer to any point in the domain S that lies outside
a fixed proper algebraic subset S̃, and a property is said to hold generically if
it holds everywhere on S \ S̃. The following well-known lemma is a main tool
in this paper, and its proof will be included in Appendix A for completeness. It
gives as an immediate corollary a trivial necessary condition for generic finite
identifiability.

Lemma 1.1. Suppose f : S → Rd is a polynomial map defined on an open set
S ⊂ Rn. The following statements are equivalent:

(i) f is generically finite-to-one.
(ii) There exists a proper algebraic subset S̃ ⊂ Rn such that the fibers of the

restricted map f |S\S̃ are all finite, i.e. |Ff |S\S̃
(s)| < ∞ for all s ∈ S \ S̃.

(iii) The Jacobian matrix of f is generically of full column rank.

Corollary 1.2. Given a DAG G = (V,E), a necessary condition for generic
finite identifiability of its associated model N∗(G) is that

(
m+1
2

)
− 2m ≥ |E|.

Proof of . The Jacobian matrix of φG is of size
(
m+1
2

)
× (|E| + 2m), and it is

necessary that
(
m+1
2

)
≥ |E|+ 2m for it to have full column rank.

Property (ii) is seemingly weaker than (i) in Lemma 1.1. It is useful in proving
our results in Section 5. In light of , for the rest of this paper we will restrict our
attention to DAGs G = (V,E) with

(
m+1
2

)
− 2m ≥ |E|, in which case m must

be at least 3.
One of our contributions is a sufficient graphical condition stated in Theo-

rem 1.3 below. For v �= w ∈ V , we will use v — w or w — v to denote the edge
(v, w) = (w, v) of an undirected graph on V . With slight abuse of notation, we
may also use v — w or w — v to denote an edge v → w ∈ E when the direction-
ality of edges in a DAG G = (V,E) is to be ignored. For any directed/undirected
graph G = (V,E), the complement of G, denoted as Gc = (V,Ec), is the undi-
rected graph on V with the edge set Ec = {v — w : (v, w) �∈ E and (w, v) �∈ E}.
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Fig 1.1. A DAG G that satisfies the sufficient condition in Theorem 1.3; its undirected
complement Gc is shown on the right.

Theorem 1.3 (Sufficient condition for generic finite identifiability). The model
N∗(G) given by a DAG G = (V,E) is generically finitely identifiable if every
connected component of Gc contains an odd cycle.

Figure 1.1 shows a DAG G that satisfies the sufficient condition in Theo-
rem 1.3; its undirected complement Gc is shown on the right of the figure. We
will revisit this example in Section 4, where we report on algebaric computations
that show that for this graph G the fibers of φG are generically of size 2 or 4.

Our approach to proving Theorem 1.3 also yields a necessary condition for
generic finite identifiability. This condition can be stated in terms of two undi-
rected graphs on the node set V , denoted G|L,cov = (V,E|L,cov) and Gcon =
(V,Econ), where E|L,cov captures the dependency of variable pairs after condi-
tioning on the latent variable L, and Econ captures the dependency of variable
pairs after conditioning on all other variables. From (1.1) it can be seen that
Σ|L := (Im − ΛT )−1Ω(Im − Λ)−1 is the covariance matrix of X conditioning
on L, hence v — w ∈ E|L,cov if and only if (Σ|L)vw �≡ 0, and analogously

v — w ∈ Econ if and only if (Σ−1
|L )vw �≡ 0. It is well known that these two

undirected graphs can be obtained by using the d-separation criterion applied
to the extended DAG G; see Drton et al. (2009, p. 73) for example.

Theorem 1.4 (Necessary condition for generic finite identifiability). Given a
DAG G = (V,E), for the model N∗(G) to be generically finitely identifiable, it
is necessary that the following two conditions both hold:

(i) |Econ| − |E| ≥ dcon, where dcon is the number of connected components in
the graph (Gcon)

c that do not contain any odd cycle;
(ii) |E|L,cov| − |E| ≥ dcov, where dcov is the number of connected components

in the graph (G|L,cov)
c that do not contain any odd cycle.

Figure 1.2 gives an example of a DAG that fails to satisfy our necessary
condition, specifically, condition (ii).

In addition to the closely related work of Stanghellini (1997) and Vicard
(2000), identifiability of directed Gaussian models with one latent variable has
been studied by Stanghellini and Wermuth (2005). The models we treat here are
special cases with the latent node being a common parent of all the observable
nodes. As we review in more detail in Section 2, we can readily adapt the suffi-
cient graphical criteria given in Stanghellini and Wermuth (2005) for certifying
that the model N∗(G) of a given DAG G is generically finitely identifiable with
respect to Definition 1.3. Our own sufficient condition stated in Theorem 1.3
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Fig 1.2. A graph G (left), Gcon (middle) and Gc
con (right). Since |Econ|−|E| = 1 < 2 = dcon,

the necessary condition in Thm. 1.4 does not hold.

is stronger, in the sense that every DAG G satisfying the sufficient conditions
in Stanghellini and Wermuth (2005) necessarily satisfies the condition in The-
orem 1.3. However, when it applies the result of Stanghellini and Wermuth
(2005) yields a stronger conclusion than our generic finiteness result. Indeed as
we also emphasize in the discussion in Section 6, their conditions imply that the
parmetrization is generically 2-to-1.

We will prove the above stated Theorems 1.3 and 1.4 in Section 3. Since
the parametrization map in (1.3) is polynomial, the generic finite identifiabil-
ity of a given model is decidable by algebraic techniques that involve Gröbner
basis computations. In Section 4, we will study the applicability of our graph-
ical criteria via such algebraic computations for all models N∗(G) of DAGs G
with m = 4, 5, 6 nodes. Section 4 also contains simulation experiments for larger
graphs and a discussion of the computational complexity of checking the graph-
ical conditions. Section 5 will give results on situations where we can determine
generic finite identifiability of a model N∗(G) based on knowledge about the
generic finite identifiability of a model N∗(G

′), where G′ is an induced sub-
graph of G.

Before ending this introduction, however, we comment on the role that Markov
equivalence plays in our problem. Recall that two DAGs defined on the same
set of nodes are Markov equivalent if they have the same d-separation relations.
The following theorem, which will be proved in Appendix A, says that generic
finite identifiability is a property of Markov equivalence classes of DAGs.

Theorem 1.5. Suppose G1 = (V,E1) and G2 = (V,E2) are two Markov equiv-
alent DAGs on the same set of nodes V . Then the model N∗(G1) is generically
finitely identifiable if and only if the same is true for N∗(G2).

2. Prior work

Stanghellini and Wermuth (2005) give sufficient graphical conditions for identi-
fiability of directed Gaussian graphical models with one latent variable that can
be any node in the DAG. We revisit their result in the context of the models from
Definition 1.1 and formulate it in terms of generic finite identifiability. (As was
mentioned in the Introduction, their result yields in fact the stronger conclusion
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of a generically 2-to-1 parametrization.) We begin by stating a well-known fact
about DAG models without latent variables.

Lemma 2.1. For any DAG G = (V,E) with m = |V | nodes, the map

(Λ,Ω) �→ (Im − ΛT )−1Ω(Im − Λ)−1

is injective on the domain RE × diag+m and has a rational inverse.

Proof. For any (Λ,Ω) ∈ RE×diag+m, let Σ = (σvw) = (Im−ΛT )−1Ω(Im−Λ)−1.
Let pa(v) = {w : w → v ∈ E} be the parent set of the node v. Then one can
show, by induction on m and considering a topological ordering of V , that

Λpa(v),v =
(
Σpa(v),pa(v)

)−1
Σpa(v),v

and

Ωvv = σvv − Σv,pa(v)

(
Σpa(v),pa(v)

)−1
Σpa(v),v;

compare, for instance, Richardson and Spirtes (2002, §8).

Let the random vector X and the latent variable L have their joint distribu-
tion specified via the equation system from (1.1). Write Σ|L for the conditional
covariance matrix of X given L. Then it holds that

Σ|L = (Im − ΛT )−1Ω(Im − Λ)−1. (2.1)

Hence, by Lemma 2.1, when knowing Σ|L we can uniquely solve for the pair
(Λ,Ω), which are rational functions of Σ|L. Writing Σ for the (unconditional)
covariance matrix of X, we have from (1.2) that

Σ|L = Σ− (Im − ΛT )−1δδT (Im − Λ)−1.

Consequently, (Λ,Ω) can be recovered uniquely from Σ and (Im −ΛT )−1δ. The
results of Stanghellini and Wermuth (2005) then address identification of the
vector (Im − ΛT )−1δ, which holds the covariances between each coordinate of
X and the latent variable L. We obtain the following observation.

Proposition 2.2 (Adapted from Stanghellini and Wermuth, 2005). Let G =
(V,E) be a DAG. The model N∗(G) is generically finitely identifiable if

(i) every connected component of Gc
|L,cov = (V,Ec

|L,cov) has an odd cycle, or

(ii) every connected component of Gc
con = (V,Ec

con) has an odd cycle.

Proof. Theorem 1 in Stanghellini and Wermuth (2005) gives (i) or (ii) as a
sufficient condition for identifying, up to sign, the m-vector (Im−ΛT )−1δ when
Σ = φG(Λ,Ω, δ) for a generic point (Λ,Ω, δ) in Θ. In this case, we can uniquely
recover the conditional covariance matrix Σ|L from (2.1) and also the pair (Λ,Ω)
by Lemma 2.1. After identifying Λ, δ can be solved for, up to sign, by the
previous knowledge of (Im − ΛT )−1δ. Hence, (i) or (ii) is in fact a sufficient
condition for generic finite identifiability of N∗(G).
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Fig 2.1. A graph G (left) satisfying the sufficient condition in Proposition 2.2, with Gcon

(middle) and Gc
con (right).

Figure 2.1 shows a DAG with m = 5 nodes that satisfies the condition of
Proposition 2.2(ii).

We conclude this review of prior work by pointing out that any model N∗(G)
that can be determined to be generically finitely identifiable using Proposi-
tion 2.2 can also be found to have this property using our new Theorem 1.3.

Proposition 2.3. A DAG G = (V,E) satisfying either one of the conditions
in Proposition 2.2 necessarily satisfies the condition in Theorem 1.3.

Proof. Let G|L,cov = (V,E|L,cov) and Gcon = (V,Econ). An edge v → w ∈ E
also present itself as an undirected edge in both E|L,cov and Econ. Hence, when
ignoring the directionality of its edges, G is a subgraph of both G|L,cov and
Gcon and, thus, Gc is a supergraph of both Gc

|L,cov and Gc
con. As such, if every

connected component of Gc
|L,cov, or of G

c
con, contains an odd cycle, the same is

true of Gc.

3. Criteria based on the Jacobian of parametrization maps

In this section, we prove Theorems 1.3 and 1.4. Let G = (V,E) be a fixed DAG
with m = |V | nodes, and let Θ := RE × diag+m ×Rm denote again the domain
of the parametrization

φG : (Λ,Ω, δ) �−→ (Im − ΛT )−1(Ω + δδT )(Im − Λ)−1

of the covariance matrix of the distributions in model N∗(G). We begin by
introducing other mappings that are generically finite-to-one if and only if φG

is generically finite-to-one.
First, it will be helpful to study the map

φ̃G : (Λ,Ω, δ) �−→ (Im − ΛT )−1Ω(Im − Λ)−1 + δδT , (3.1)

defined on Θ. Second, focusing on concentration instead of covariance matrices,
we will also consider the maps

ϕG : (Λ,Ψ, γ) �−→ (Im − Λ)(Ψ− γγT )(Im − ΛT ), (3.2)

ϕ̃G : (Λ,Ψ, γ) �−→ (Im − Λ)Ψ(Im − ΛT )− γγT . (3.3)
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Lemma 3.1. The parametrization φG is generically finite-to-one if and only if
any one of the maps φ̃G, ϕG and ϕ̃G is generically finite-to-one.

Proof. Consider first the map φ̃G for which it holds that φG = φ̃G ◦ g, where

g : (Λ,Ω, δ) �−→ (Λ,Ω, (Im − ΛT )−1δ)

is a diffeomorphism that maps Θ to itself. By the chain rule, the Jacobian
of φG at (Λ,Ω, δ) is the product of the Jacobian of φ̃G at g(Λ,Ω, δ) and the
Jacobian of g at (Λ,Ω, δ). Now the latter matrix is invertible on all of Θ since
g is a diffeomorphism. It follows that there exists a point in Θ at which the
Jacobian of φG has full column rank if and only if the same is true for φ̃G. For
the Jacobian of a polynomial map such as φG and φ̃G, full column rank at a
single point implies generically full column rank; use the subdeterminants that
characterize a drop in rank to define a proper algebraic subset of exceptions, see
also Geiger et al. (2001, Lemma 9). The claim about φG and φ̃G follows from
Lemma 1.1.

Let h : (Λ,Ψ, γ) �−→ (Λ,Ψ, (Im − Λ)γ). Since ϕG = ϕ̃G ◦ h, by the same
argument as above it also holds that ϕG is generically finite-to-one if and only
if φ̃G has this property.

In order to complete the proof of the lemma it suffices to show that φG is
generically finite-to-one if and only if the same holds for ϕG. Define another
diffeomorphism from Θ to itself as

ρ : (Λ,Ω, δ) �−→
(
Λ,Ω−1, (1 + δTΩ−1δ)−1/2Ω−1δ

)
.

Writing inv for matrix inversion, we then have that

inv ◦ φG = ϕG ◦ ρ (3.4)

because of the identity (Ω+δδT )−1 = (Ψ−γγT ) with Ψ = Ω−1 and γ = k−1/2Ψδ,
where k = 1+ δTΨδ > 0; see e.g. Rao (1973, p. 33). Using (3.4), the equivalence
of being generically finite-to-one for φG and ϕG may be argued similarly as for
the maps considered earlier.

Let J(ϕ̃G) be the Jacobian matrix of the map ϕ̃G from (3.3). It will be
examined to prove Theorem 1.3. In light of Lemmas 1.1 and 3.1, we will show
that if G satisfies the condition in Theorem 1.3, then J(ϕ̃G) is generically of
full column rank, implying that φG is generically finite-to-one. Our arguments
will make use of the following lemma that rests on observations made in Vicard
(2000).

Lemma 3.2. Let G = (V,E) be an undirected graph, and let fG : RV → RE be
the map with coordinate functions

fG,vw(x) = xvxw, v — w ∈ E.

Then the Jacobian of fG has generic rank m− d, where m = |V | is the number
of nodes and d is the number of connected components of G that do not contain
an odd cycle.
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Proof. For simpler notation, let f := fG. Let Jf be the Jacobian matrix of the
polynomial map f , and let ker(Jf ) be its kernel. By the rank theorem (Rudin,
1976, p. 229), the dimension of ker(Jf ) is generically equal to the dimension of
the fiber Ff ; recall (1.4). Since rank(Jf ) = m−dim(ker(Jf )), it suffices to show
that Ff has generic dimension d.

Since the claim is about a generic property, we may restrict the domain of f
to the open set X := (R \ {0})m. This assumption is made so that Lemma 1 in
Vicard (2000) is applicable later without difficulty. Now, fix a point y ∈ f(X ) ⊂
RE . The elements of the fiber Ff (y) are the vectors x ∈ Rm, or equivalently,
x ∈ X , that are solutions to the system of equations

yvw = xvxw, v — w ∈ E. (3.5)

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be the connected components of G, so
that V1, . . . , Vk form a partition of V and E1, . . . , Ek partition E. Let k′ ≤ k be
the number of connected components containing two nodes at least. Without
loss of generality, assume Gk′+1, . . . , Gk are all the connected components with
only a single node. Then the equations listed in (3.5) can be arranged to form k′

disjoint subsystems indexed by i = 1, . . . , k′. The i-th subsystem has the form

yvw = xvxw, v — w ∈ Ei (3.6)

and exclusively involves the variables {xv : v ∈ Vi}. By Lemma 1 in Vicard
(2000) and also the relevant discussion in the proof of Theorem 1 in the same
paper, the solution set to (3.6) either contains two points or can be parametrized
by a single free variable in R. The former case arises if and only if Gi contains an
odd cycle. It follows that the dimension of the solution set of (3.6) is zero when
Gi contains an odd cycle, and it has dimension one if Gi does not contain an odd
cycle. In addition, each singleton component Gi = (Vi, ∅) for i = k′ + 1, . . . , k
provides one additional dimension to the fiber Ff (y), since the corresponding
variables in x are not restricted by any equations. We conclude that the di-
mension of Ff (y) equals the number of connected components Gi that do not
contain an odd cycle.

We return to the object of study, namely, the map ϕ̃G which sends the (2m+
|E|)-dimensional set Θ = RE × diag+m ×Rm to the

(
m+1
2

)
-dimensional space of

symmetric m×m matrices. The Jacobian J(ϕ̃G) is of size
(
m+1
2

)
× (2m+ |E|),

and we index its rows by pairs (v, w) with 1 ≤ v < w ≤ m, whereas in Section 1
we assume the vertex set V = {1, . . . ,m} to be topologically ordered. We now
describe a particular way of arranging the rows and columns of J(ϕ̃G).

Define the set of “non-edges” as N := {(v, w) : v < w and (v, w) �∈ E}; we
will also write v �→ w to express that (v, w) ∈ N . Also, define D := {(v, v) : v ∈
V }, so that D∪E∪N index all entries in the upper triangular half of an m×m
symmetric matrix. The rows of J(ϕ̃G) are now arranged in the order D, E and
N . The columns of J(ϕ̃G) are indexed such that partial derivatives with respect
to the free input variables in the triple (Λ,Ψ, γ) appear from left to right, in the
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order Ψ, Λ and γ. In other words, we partition J(ϕ̃G) into 9 blocks as follows:

J(ϕ̃G) =

⎡⎣
Ψ Λ γ

D · · · · · · · · ·
E · · · · · · · · ·
N · · · · · · · · ·

⎤⎦. (3.7)

The following lemma is obtained by inspection of the partial derivatives of
ϕ̃G. Its proof appears in Appendix A.

Lemma 3.3. The Jacobian matrix J(ϕ̃G) is generically of full column rank
provided that the submatrix [J(ϕ̃G)]N,γ is so.

We now give the proof of Theorem 1.3.

Proof of Theorem 1.3. By Lemmas 1.1 and 3.3, it suffices to show that the ma-
trix [J(ϕ̃G)]N,γ is generically of full column rank. For each v �→ w ∈ N ,

[ϕ̃G(Λ,Ψ, γ)]vw =
[
(Im − Λ)Ψ(Im − ΛT )

]
vw

− γvγw. (3.8)

Note that only the right most term in (3.8) contributes to the partial derivatives
of ϕ̃G with respect to γ = (γv)v∈{1,...,m}.

Ignoring the directionality of non-edges in N , define the undirected graph
H = (V,N) to which we associate a map fH as in Lemma 3.2. Then

[J(ϕ̃G)]N,γ = −JfH .

But JfH has generically full column rank by Lemma 3.2 because, in fact, H is
equal to the complementary graph Gc for which we assume that all connected
components contain an odd cycle.

We remark that Theorem 1.3 can also be proven by studying the Jacobian
of the map φ̃G from (3.1). We chose to work with ϕ̃G above since this allowed
us to avoid consideration of the inverse of the matrix Im −Λ. For Theorem 1.4,
however, we consider both ϕ̃G and φ̃G.

Proof of Theorem 1.4. We first prove the necessity of condition (i) by showing
that if |Econ|−|E| < dcon, then the Jacobian matrix J(ϕ̃G) always has row rank
less than 2m + |E|. This implies that it cannot be of full column rank which
implies the failure of generic finite identifiability by Lemma 1.1.

As in the proof of Theorem 1.3, we consider the set of non-edges N , which
we now partition as N = N1∪̇N2, where N1 = {v �→ w ∈ E : v — w ∈ Econ},
and N2 = N \N1. Accordingly, we can partition the submatrix [J(ϕ̃G)]N,{Ψ,Λ,γ}
into two block of rows indexed by N1 and N2 as

[J(ϕ̃G)]N,{Ψ,Λ,γ} =

[ Ψ Λ γ

N1 · · · · · · · · ·
N2 0 0 · · ·

]
. (3.9)

To see that the submatrix [J(ϕ̃G)]N2,{Ψ,Λ} = 0, observe first that an entry of

(I −Λ)Ψ(I −ΛT ) is the zero polynomial if and only if the same is true for Σ−1
|L ,
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where Σ|L is the matrix from (2.1). Second, by definition of Econ and N2, if

(v, w) ∈ N2 then (Σ−1
|L )vw = 0.

Next, observe that to prove the necessity of condition (i) it suffices to show
that the rank of [J(ϕ̃G)]N2,γ cannot be larger than m − dcon. Indeed, if this is
true, then there exists a subset N ′

2 ⊂ N2 with |N ′
2| = m − dcon, such that the

submatrix
[J(ϕ̃G)]{D,E,N1,N ′

2},{Ψ,Λ,γ}

has the same rank as the original Jacobian matrix J(ϕ̃G). However, the subma-
trix [J(ϕ̃G)]{D,E,N1,N ′

2},{Ψ,Λ,γ} has 2m + |Econ| − dcon rows, and thus its rank
is less than 2m + |E| because under condition (i) we have |Econ| − |E| < dcon.
As a result, J(ϕ̃G) cannot be of full column rank.

It now remains to show that [J(ϕ̃G)]N2,γ has rank at most m−dcon. Observe
that the undirected graph (V,N2) is equal to the complementary graph (Gcon)

c.
Moreover, [J(ϕ̃G)]N2,γ is equal to the negative Jacobian of the map f(Gcon)c that
we get by applying the construction from Lemma 3.2 to (Gcon)

c; recall the proof
of Theorem 1.3. Applying Lemma 3.2, we find that [J(ϕ̃G)]N2,γ has generic rank
m− dcon, which is also the maximal rank that [J(ϕ̃G)]N2,γ may have.

The proof of (ii) follows the exact same argument as that of (i), by replacing
(a) Gcon with G|L,cov, (b) dcon with dcov, (c) ϕ̃G with φ̃G, (d) Ψ with Ω, (e) γ

with δ and (f) J(ϕ̃G) with J(φ̃G), where J(φ̃G) is partitioned as

J(φ̃G) =

⎡⎣
Ω Λ δ

D · · · · · · · · ·
E · · · · · · · · ·
N · · · · · · · · ·

⎤⎦, (3.10)

similarly to (3.7).

4. Computations and simulation experiments

According to Theorems 1.3 and 1.4 generic (non-)identifiability can be verified
using algorithms that determine the existence of odd cycles for each connected
component of a given graph. Efficient algorithms based on depth-first search
techniques exist for that purpose: Finding all connected components of a graph
G = (V,E), directed or not, requires O(|V |+ |E|) operations. If G is connected,
determining the oddness of its cycles is equivalent to determining the oddness
of the fundamental cycles with respect to a spanning tree of G, which requires
O(|V |+|E|+l) operations, where l is the sum of the lengths of these fundamental
cycles. The relevant algorithms are discussed in Reingold et al. (1977, Chap. 8).

To certify generic finite identifiability of a model N∗(G) for a DAG G based
on Theorem 1.3, its complement Gc has to be submitted as an input to the
graph algorithms. When G is sparse, one may want to avoid handling the dense
complement Gc. The following corollary gives two simple criteria.

Corollary 4.1. The model N∗(G) for a DAG G = (V,E) is generically finitely
identifiable if
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(i) G has two connected components, at least one of which is incomplete, or
(ii) G has three connected components.

Proof. We will prove (i) here. Let G1 = (V1, E1) and G2 = (V2, E2) be the two
connected components of G such that V = V1 ∪ V2 and E = E1 ∪ E2. Clearly,
any two nodes v ∈ V1 and w ∈ V2 are adjacent in the complement Gc = (V,Ec).
Moreover, two nodes v, w ∈ V1 are connected in Gc as we may pick any u ∈ V2

to have v — u, u — w ∈ Ec. Similarly, any two nodes in V2 are connected in
Gc. Hence, Gc is a connected graph. The claim is then proven if we can show
that Gc contains an odd cycle. By assumption of incompleteness, without loss of
generality, there are v1, w1 ∈ V1 such that v1 → w1, w1 → v1 �∈ E1. This implies
that Gc contains the odd cycle v1 — u, u — w1, w1 — v1 for arbitrary u ∈ V2.

The proof of (ii) is similar and simpler, and we omit it.

4.1. Algebraic computations for small graphs

As explained in Drton (2006, §3) and Garcia-Puente et al. (2010), identifiability
properties of a model such as N∗(G) can be decided using Gröbner basis tech-
niques from computational algebraic geometry (Cox et al., 2007). While these
techniques are tractable only for small to moderate size problems, we were able
to perform an exhaustive algebraic study of all DAGs G = (V,E) with m ≤ 6
nodes. Beyond a mere decision on whether the parametrization map φG is gener-
ically 1-to-1, the algebraic methods also provide information about the generic
cardinality of the fibers of φG as a map defined on complex space.

Definition 4.1. For a DAG G = (V,E), let φC

G be the map obtained by ex-
tending φG to the complex domain C2m+|E|. If the (complex) fibers of φC

G are
generically of cardinality k, then we say that φC

G is generically k-to-one.

The language of Definition 4.1 allows us to give a refined classification of
DAGs G in terms of the identifiability properties of the parametrization of
model N∗(G). Indeed, N∗(G) is generically finitely identifiable if and only if φC

G

is generically k-to-one for some k < ∞.

Remark. The generic size of the fibers of φC

G equals the generic size of the fibers
of the complex extensions of the three maps from Lemma 3.1. The map ϕ̃G has
low degree coordinates and tends to be the easiest to work with in algebraic
computation. Another approach that can be useful is to adapt the algorithm
described in Section 8 of the supplementary material for Foygel et al. (2012).
To do this note that for Λ ∈ CE there exist complex choices of Ω and δ such
that φG(Λ,Ω, δ) = Σ if and only if (I−ΛT )Σ(I−Λ) is a matrix that is the sum
of a diagonal matrix, namely, Ω, and a symmetric matrix of rank 1, namely,
δδT . Whether a matrix is of the latter type can be tested using tetrads, that
is, 2 × 2 subdeterminants involving only off-diagonal entries of the matrix; see
also (5.4) below. The tetrads of a matrix form a Gröbner basis (de Loera et al.,
1995; Drton et al., 2007).

Table 1 lists out the counts of DAGs G = (V,E), with 4 ≤ m ≤ 6 nodes, that
have φC

G generically k-to-one, for all possible values of k. The table also gives the
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Table 1

Counts of unlabeled DAGs G with m nodes, at most
(m+1

2

)
− 2m edges, and complex

parametrization φC

G generically k-to-one. Counts are also given for DAGs that satisfy the
sufficient conditions from Thm. 1.3 and Prop. 2.2, and DAGs that fail to satisfy the

necessary condition from Thm. 1.4

m 4 5 6

k < ∞ 5 95 3344
k = 2 5 87 2961
k = 4 0 8 345
k = 6 0 0 24
k = 8 0 0 14

Prop. 2.2 5 49 985
Thm. 1.3 5 88 2957

k = ∞ 1 20 552

Thm. 1.4 1 20 361

Total # of DAGs 6 115 3896

the counts of DAGs satisfying the conditions in Theorems 1.3 and 1.4 as well as
Proposition 2.2. DAGs with

(
m+1
2

)
− 2m < |E|, which trivially give generically

∞-to-one maps φC

G in view of , are excluded. We emphasize that the counts are
with respect to unlabeled DAGs, that is, all DAGs that are isomorphic with
respect to relabeling of nodes are counted as one unlabeled graph.

In the considered settings the condition in Theorem 1.3 is very successful
in certifying DAGs with a generically finitely identifiable model. For instance,
when m = 6, it is able to correctly identify 2957 out of 3344 such graphs.
The previously known sufficient condition of Stanghellini and Wermuth (2005)
identifies 985 of them. Our necessary condition in Theorem 1.4 is also useful in
assessing graphs that give generically infinite-to-one models. For instance, when
m = 6, we find that 361 of 552 such graphs violate the condition; recall the
example from Figure 1.2.

While, by Proposition 2.3, our sufficient condition in Theorem 1.3 is stronger
than that in Proposition 2.2 for generic finite identifiability, the latter condition,
due to Stanghellini and Wermuth (2005), in fact implies that φC

G is generically
2-to-one. For m = 5, there are 6 DAGs that satisfy the condition in Theorem 1.3
but give generically 4-to-one maps φC

G. The graph from Figure 1.1 is an example.
We note that for this DAG G the fibers of φC

G intersect the statistically relevant
set Θ in either 2 or 4 points, and both possibilities do occur.

4.2. Simulation study for larger graphs

For DAGs with a large number of nodes m, using exhaustive algebraic compu-
tations to determine their identifiability is not feasible. We instead assess the
power of our graphical conditions by simulations. For m = 25 and m = 35, we
randomly generate 5000 labeled DAGs with k edges, where k ranges from 226 to
275 when m = 25 and from 461 to 560 when m = 35. Note that for each m, the
maximum number of edges in the DAGs we draw equals

(
m+1
2

)
− 2m; over that

limit the DAGs must give generically non-identifiable models by . The number
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Fig 4.1. For each m = 25 or 35 and each fixed number of edges, the counts of 5000 randomly
drawn labeled DAGs satisfying the sufficient condition in Theorem 1.3 are plotted in black,
and the counts of labeled DAGs satisfying the necessary condition in Theorem 1.4 are plotted
in red.

of graphs satisfying the conditions in Theorems 1.3 and Theorems 1.4 are plot-
ted in Figure 4.1. As the number of edges increases, our sufficient condition in
Theorems 1.3 certifies less of the randomly generated graphs to be identifiable.
This agrees with the intuition that it is less likely to have a generically finitely
identifiable model as the number of edges increases, since there are more free
parameters in the coefficient matrix Λ. On the contrary, the necessary condition
in Theorem 1.4 is not very helpful in telling apart generically infinite-to-one
models since almost all random graphs satisfy it.

5. Subgraph extension

This section concerns results on how we can extend knowledge about identi-
fiability of an induced subgraph to that of the original DAG. We recall stan-
dard terminology in graphical modeling. For a given DAG G = (V,E), we
write pa(v) = {w : w → v ∈ E} for the parent set of the node v, and
ch(v) = {w : v → w ∈ E} for the child set of v. If for some node s ∈ V
there does not exist a node s′ ∈ V with s → s′ ∈ E, then s is a sink node. If
there is no other node s′ ∈ V with s′ → s ∈ E, then s is a source node. The
following theorem is the main result of this section.

Theorem 5.1. Given a DAG G = (V,E), if there exists

(i) a sink node s ∈ V such that pa(s) �= V \ {s} and the model N∗(G
′) of the

induced subgraph G′ on V \ {s} is generically finitely identifiable, or
(ii) a source node s ∈ V such that ch(s) �= V \ {s} and the model N∗(G

′) of
the induced subgraph G′ on V \ {s} is generically finitely identifiable,

then the model N∗(G) is generically finitely identifiable.

Recall that in Table 1 there are 3344− 2957 = 387 DAGs with m = 6 nodes
that are generically finitely identifiable but do not satisfy our sufficient condition
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from Theorem 1.3. The above Theorem 5.1 provides a way to certify identifia-
bility of models falling within this “gap”, provided that we have knowledge of
which DAGs on m = 5 nodes are generically finitely identifiable. For instance,
from our algebraic computations we know that there are 95 − 88 = 7 DAGs
that are generically finitely identifiable but cannot be proven to be so by Theo-
rem 1.3. Of the 387 aforementioned DAGs on 6 nodes, 194 can be proven to be
generically finitely identifiable by using the knowledge about the 7 graphs on
m = 5 nodes and applying Theorem 5.1. We remark that if a DAG satisfies the
condition in Theorem 1.3, the resulting supergraph obtained by augmenting a
sink (source) node that does not have every other node as its parent (child) must
also satisfy the condition in Theorem 1.3. Hence, given current state-of-the-art,
Theorem 5.1 is useful primarily as a tool to reduce the identifiability problem
to smaller subgraphs that may then be tackled by algebraic methods.

Theorem 5.1 is obtained by studying the maps φG and ϕG in (1.3) and
(3.2). First consider (1.3). In light of Lemma 1.1(ii), we can show that φG is
generically finite-to-one if there exists a proper algebraic subset Ξ ⊂ R2m+|E|

such that |FφG|Θ\Ξ(θ0)| < ∞ for all θ0 = (Λ0,Ω0, δ0) ∈ Θ \ Ξ, or equivalently,

(Im − ΛT )φG(θ0)(Im − Λ) = Ω + δδT , (5.1)

has finitely many solutions for (Λ,Ω, δ) in Θ \ Ξ. Throughout this section, Ξ is
taken so that all points (Λ,Ω, δ) ∈ Θ \ Ξ have δi �= 0 for all i = 1, . . . ,m. As
such, the matrix Ω+ δδT on the right hand side of (5.1) has all entries nonzero
and is known as a Spearman matrix.

Definition 5.1. A symmetric matrix Υ ∈ Rm×m of size m ≥ 3 is a Spearman
matrix if Υ = Ω + δδT for a diagonal matrix Ω with positive diagonal and a
vector δ with no zero elements.

Any Spearman matrix Υ is positive definite, and it is not difficult to show
that if Υ = Ω + δδT is Spearman with m ≥ 3 then the two summands Ω
and δδT are uniquely determined as rational functions of Υ. Moreover, δδT

determines δ up to sign change. For these facts see, for instance, Theorem 5.5 in
Anderson and Rubin (1956). We term Ω the diagonal component of Υ, and δδ′

the rank-1 component. The following theorem gives an implicit characterization
of Spearman matrices of size m ≥ 4.

Theorem 5.2. A positive definite symmetric matrix Υ = (υij) ∈ Rm×m of
size m ≥ 4 is a Spearman matrix if and only if, after sign changes of rows and
corresponding columns, all its elements are positive and such that

υijυkl − υikυjl = υilυjk − υikυjl = υijυkl − υilυjk = 0 (5.2)

for i < j < k < l, and
υiiυjk − υikυji > 0 (5.3)

for i �= j �= k.

This is essentially the same as Theorem 1 in Bekker and de Leeuw (1987),
which the reader is referred to for a proof. Unlike Bekker and de Leeuw (1987),
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we have a strict inequality in (5.3) since in Definition 5.1 we require the diagonal
component of a Spearman matrix to be strictly positive.

The three polynomial expressions in (5.2) are the 2 × 2 off-diagonal minors
of the matrix Υ, which are also known as tetrads in the literature. We call the
quadruple i < j < k < l the indices of the tetrad they define. Note that

υijυkl − υilυjk = (υijυkl − υikυjl)− (υilυjk − υikυjl)

so that the three tetrads in (5.2) are algebraically dependent. In general, a
symmetric m×m matrix Υ has 2

(
m
4

)
algebraically independent tetrads and we

write TETRADS(Υ) to denote a column vector comprising a choice of 2
(
m
4

)
algebraically independent tetrads.

For each triple (Λ,Ω, δ) ∈ Θ \ Ξ that solves (5.1), it must be true that

TETRADS
(
(Im − ΛT )φG(θ0)(Im − Λ)

)
= 0. (5.4)

Together with the uniqueness of the diagonal and rank-1 components for a
Spearman matrix, if we can show only finitely many Λ’s solve the system (5.4),
then we have shown that the model N∗(G) is generically finitely identifiable.
Our proof for Theorem 5.1(i) follows this approach.

Alternatively, based on Lemma 3.1, we can also prove generic finite identifi-
ability by considering the map ϕG from (3.2). We then need to show that there
exists a proper algebraic subset Ξ ⊂ R2m+|E| so that |FϕG|Θ\Ξ(θ0)| < ∞ for all
θ0 = (Λ0,Ψ0, γ0) ∈ Θ \ Ξ, or equivalently,

(Im − Λ)−1ϕG (θ0) (Im − ΛT )−1 = Ψ− γγT (5.5)

has finitely many solutions for (Λ,Ψ, γ) in Θ \ Ξ. Again we assume that Ξ
is defined to avoid issues due to zeros, that is, every triple (Λ,Ψ, γ) ∈ Θ \ Ξ
has γi �= 0 for all i = 1, . . . ,m. We introduce the term coSpearman matrix to
describe the matrix on the right hand side of (5.5).

Definition 5.2. A symmetric matrix Υ ∈ Rm×m of size m ≥ 3 is a coSpearman
matrix if Υ = Ψ − γγT for a diagonal matrix Ψ with positive diagonal and a
vector γ with no zero elements.

Again, the diagonal component Ψ and the rank-1 component γγT are uniquely
determined by Υ; compare Stanghellini (1997, p. 243). The following theorem
is analogous to Theorem 5.2.

Theorem 5.3. A positive definite symmetric matrix Υ = (υij) ∈ Rm×m of size
m ≥ 4 is a coSpearman matrix if and only if, after sign changes of rows and
corresponding columns, all its non-diagonal elements are negative and such that

υijυkl − υikυjl = υilυjk − υikυjl = υijυkl − υilυjk = 0 (5.6)

for i < j < k < l, and
υiiυjk − υikυji < 0 (5.7)

for i �= j �= k.
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Using the tetrad characterizations (5.6) and the uniqueness of diagonal and
rank-1 components, one can now demonstrate that the restricted map ϕG|Θ\Ξ
has finite fibers by showing that the system of tetrad equations

TETRADS
(
(Im − Λ)−1ϕG (θ0) (Im − ΛT )−1

)
= 0 (5.8)

admits only finitely many solutions for Λ when θ0 ∈ Θ \ Ξ.
The finiteness of solutions in Λ for the system (5.4), or (5.8), is a suffi-

cient condition for the generic finite identifiability of N∗(G). It is, however, not
obvious that these two systems necessarily have finitely many solutions when
N∗(G) is generically finitely identifiable. The following lemma states that such
a converse does hold for the following two types of DAGs, whose generic finite
identifiability can be easily checked by Theorem 1.3. Recall that the notation
“ � ” means “being a proper subset of”.

Lemma 5.4. Let G = (V,E) be a DAG with vertex set V = {1, . . . ,m}.
(i) If E � {(k,m) : k ≤ m− 1}, then there exists a proper algebraic subset Ξ

such that for all θ0 = (Λ0,Ω0, δ0) ∈ Θ \ Ξ, the system

TETRADS
(
(Im − ΛT )φG (θ0) (Im − Λ)

)
= 0

is linear in the variable Λ ∈ RE and is solved uniquely by Λ = Λ0.
(ii) If E � {(1, k) : k ≥ 2}, then there exists a proper algebraic subset Ξ such

that for all θ0 = (Λ0,Ψ0, γ0) ∈ Θ \ Ξ, the system

TETRADS
(
(Im − Λ)−1ϕG (θ0) (Im − ΛT )−1

)
= 0

is linear in the variable Λ ∈ RE and is solved uniquely by Λ = Λ0.

The proof of Lemma 5.4 is deferred to Appendix A.

Proof of Theorem 5.1. We will first prove (i), which uses Lemma 5.4(i). The
proof of (ii) will follow from similar reasoning using Lemma 5.4(ii).

Without loss of generality, assume that the sink node s = m, by giving the
nodes a new topological order if necessary. Define two DAGs as follows. First,
let G1 = (V1, E1) be the subgraph of G induced by the set V1 = V \ {m} =
[m − 1], where we adopt the shorthand [k] := {1, . . . , k}, k ∈ N. Second, let
G2 = (V,E \E1) be the graph on V obtained from G by removing all edges that
do not have the sink node m as their head. As before, let Θ := RE×diag+m ×Rm.
We will construct a proper algebraic subset Ξ, such that for any θ ∈ Θ \ Ξ, the
fiber FφG|Θ\Ξ(θ) is finite. Then Lemma 1.1(ii) applies and yields the assertion
of Theorem 5.1(i).

Let Θ1 := RE1 ×diag+m−1 ×Rm−1, the open set on which the parametrization
φG1 of model N∗(G1) is defined. By assumption, there exists a proper algebraic
subset Ξ′

1 ⊂ R2(m−1)+|E1| such that the restricted map φG1 |Θ1\Ξ′
1
has finite

fibers, by Lemma 1.1(ii). Extend Ξ′
1 to a proper algebraic subset of R2m+|E| by

defining
Ξ1 := Ξ′

1 × RE\E1 × R2,
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where RE\E1 accommodates the additional free variables λvm with v ∈ pa(m),
and R2 accommodates the two variables Ωmm = ωm and δm.

Next, recall that for a given point θ′ = (Λ′,Ω′, δ′) ∈ Θ, any (Λ,Ω, δ) ∈
FφG

(θ′) must satisfy the tetrad equations

TETRADS
(
(Im − ΛT )φG(θ

′)(Im − Λ)
)
= 0. (5.9)

Let λE1 := (λvw)
T
(v,w)∈E1

. Then any tetrad in (5.9) with indices i < j < k < m
has the form ∑

m′∈pa(m)

am′ (λE1 , φG(θ
′))λm′m − b (λE1 , φG(θ

′)) ,

where the am′ as well as b are polynomials with the entries of λE1 and the entries
of a symmetric m×m matrix being their variables. Let λpa(m),m be the vector
with entries λvm for v ∈ pa(m). Then the part of the system (5.9) involving the
variables λv,m, v ∈ pa(m), has the form

C (λE1 , φG(θ
′))λpa(m),m = c (λE1 , φG(θ

′)) , (5.10)

where C is a matrix of size 2
(
m−1
3

)
×|pa(m)|, and c is a vector of length 2

(
m−1
3

)
.

Both C and c are filled with polynomials in the entries of λE1 and a symmetric
m × m matrix. Since (Λ,Ω, δ) ∈ FφG

(θ′), we have φG(θ
′) = φG(Λ,Ω, δ) and,

thus,
C (λE1 , φG(Λ,Ω, δ))λpa(m),m = c (λE1 , φG(Λ,Ω, δ)) . (5.11)

As θ′ was an arbitrary point in Θ, (5.11) holds for all (Λ,Ω, δ) ∈ Θ. We claim
that C (λE1 , φG(Λ,Ω, δ)) is of full rank for generic choices of (Λ,Ω, δ). To see this
note that if λE1 is set to 0, then (5.11) becomes the system of tetrad equations for
the graph G2. Using Lemma 5.4(i) and the assumption that pa(m) � V \ {s},
we see that C (λE1 , φG(Λ,Ω, δ)) achieves full rank for λE1 = 0 and a generic
choice of (λpa(m),m,Ω, δ). We deduce that the rank is full generically.

Let Ξ2 be a proper algebraic subset such that C (λE1 , φG(Λ,Ω, δ)) is of full
rank for any (Λ,Ω, δ) ∈ Θ\Ξ2. Let Ξ3 be the (algebraic) set comprising all triples
(Λ,Ω, δ) with at least one coordinate δi = 0, and define Ξ := Ξ1∪Ξ2∪Ξ3. Clearly,
Ξ is a proper algebraic subset of R2m+|E|. Take (Λ0,Ω0, δ0) to be a point in Θ\Ξ
and define Σ0 := φG(Λ0,Ω0, δ0). It remains to show that the equation system

Σ0 = φG(Λ,Ω, δ) = (Im − ΛT )−1(Ω + δδT )(Im − Λ)−1 (5.12)

has only finitely many solutions in (Λ,Ω, δ) over the set Θ \ Ξ.
We begin by observing that because s = m is a sink node, by taking a

submatrices in (5.12), we obtain the equation system

(Σ0)[m−1] = [(Im − ΛT )−1(Ω + δδT )(Im − Λ)−1][m−1]

= (Im−1 − ΛT
[m−1])

−1(Ω[m−1] + δ[m−1]δ
T
[m−1])(Im−1 − Λ[m−1])

−1

= φG1

(
Λ[m−1],Ω[m−1], δ[m−1]

)
.
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Here, for an index set W ⊂ [m], we write xW to denote the subvector xW =
(xv : v ∈ W ) of vector x = (x1, . . . , xm)T , and we similarly write AW for
the W × W principal submatrix of a matrix A. Let S ⊂ Θ1 be the projection
of the set of all triples (Λ,Ω, δ) ∈ Θ \ Ξ that solve (5.12) onto their triple of
submatrices/subvector (Λ[m−1],Ω[m−1], δ[m−1]). By choice of Ξ, we have that
S ⊂ Θ1 \ Ξ′

1 and, since φG1 |Θ1\Ξ′
1
has finite fibers, we know that S is finite.

However, a triple (Λ[m−1],Ω[m−1], δ[m−1]) ∈ S determines the matrix C and the
vector c in (5.11) and, by choice of Ξ, we may deduce that λpa(m),m is uniquely
determined by (Λ[m−1],Ω[m−1], δ[m−1]). It follows that the solutions to (5.12)
that are in Θ \ Ξ have their Λ part equal to one of |S|/2 many choices; recall
that if (Λ[m−1],Ω[m−1], δ[m−1]) is in S then so is (Λ[m−1],Ω[m−1],−δ[m−1]). The
proof is now complete because Λ determines the Spearman matrix

(Im − ΛT )Σ0(Im − Λ) = Ω + δδT ,

for which the diagonal component Ω and the rank-1 component δδT are uniquely
determined. Given the fact that δδT determines δ only up to sign, (5.12) has
|S| < ∞ solutions over Θ \ Ξ, which concludes the proof of (i).

The proof of (ii) is analogous, and we only give a sketch. Instead of consider-
ing φG we turn to ϕG, which also has domain Θ. Without loss of generality, we
let the source node be s = 1. We then define G1 = (V1, E1) to be the subgraph
of G that is induced by V1 = {2, . . . ,m}, and we let G2 = (V,E \E1). We con-
sider the parametrization ϕG1 with domain Θ1 = RE1 × diag+m−1 ×Rm−1. By
assumption, N∗(G1) is generically finitely identifiable, so there exists a proper
algebraic subset Ξ′

1 such that ϕG1 |Θ\Ξ′
1
has finite fibers, by Lemma 1.1(ii).

On the other hand, for any (Λ,Ψ, γ) ∈ Θ, we have

TETRADS
(
(Im − Λ)−1ϕG(Λ,Ψ, γ)(Im − ΛT )−1

)
= 0.

Let λE1 := (λvw)
T
(v,w)∈E1

and λ1,ch(1) := (λ1v)
T
v∈ch(1). Then the tetrad equations

with one index equal to s = 1 yield the equation system

C (λE1 , ϕG(Λ,Ψ, γ))λ1,ch(1) = c (λE1 , ϕG (Λ,Ψ, γ)) ,

where part (ii) of Lemma 5.4 can be applied to show that C (λE1 , ϕG(Λ,Ψ, γ))
is of full rank outside some proper algebraic subset Ξ2. We may then define a
set Ξ as in the proof of part (i) and use arguments similar to the ones above for
a proof of part (ii) of our theorem.

6. Discussion

In this paper we studied identifiability of directed Gaussian graphical models
with one latent variable that is a common cause of all observed variables. To our
knowledge, the best criteria to decide on identifiability of such models are those
given by Stanghellini and Wermuth (2005) who consider a more general setup
of Gaussian graphical models with one latent variable. Their results provide a
sufficient condition for the strictest notion of identifiability that is meaningful is
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this context, namely, whether the parametrization map is generically 2-to-one.
Recall that the coefficients associated with the edges pointing from the latent
variable to the observables can only be recovered up to a common sign change.

In our work, we take a different approach and study the Jacobian matrix
of the parametrization, which leads to graphical criteria to check whether the
parametrization is finite-to-one. Our sufficient condition covers all graphs that
can be shown to have a 2-to-one parametrization by the conditions of Stanghellini
and Wermuth (2005). However, our sufficient condition, which is stated as Theo-
rem 1.3, covers far more graphs as was shown in the computational experiments
in Section 4. Our Theorem 1.4 describes a complementary necessary condition.

By studying tetrad equations, we also give a criterion that allows one to
deduce identifiability of certain graphs from identifiability of subgraphs (Theo-
rem 5.1). This result is stated for generic finite identifiability but as is clear from
the proof, the result would also confirm that the parametrization of a graph is
generically 2-to-one provided the involved subgraph has a generically 2-to-one
parametrization.

The extension result from Theorem 5.1 can be used in conjunction with the
results obtained by the algebraic computations in Section 4. These computa-
tions solve the identifiability problem for graphs with up to 6 nodes. In par-
ticular, we confirm that the sufficient conditions of Stanghellini and Wermuth
(2005) are not necessary for the parametrization map to be generically 2-to-one
and provide examples of graphs that yield a generically finite but not 2-to-one
parametrization.

As mentioned above, we studied models with one latent source 0 that is
connected to all nodes that represent observed variables. However, the graphical
criteria in Theorems 1.3 and 1.4 can be readily extended to models with some
of these factor loading edges missing. Given the previously used notation, we
describe such models as follows. Let G = (V,E) be a DAG with vertex set of
size m = |V |; these vertices index the observed variables. Let V ′ ⊂ V be the
nodes representing observed variables that do not directly depend on the latent
variable. Then only the edges 0 → v with v ∈ V \ V ′ are added when forming
the extended DAG G. The parametrization of the Gaussian graphical model
determined by G and V ′ is the restriction of φG from (1.3) to the domain

Θ(V ′) := {(Λ,Ω, δ) ∈ Θ : δv = 0 for all v ∈ V ′} .

When the parametrization maps φ̃G, ϕG and ϕ̃G are restricted to the same
domain, the assertion of Lemma 3.1 still holds. The corresponding identifiability
results, which are in the spirit of Corollary 1 in Grzebyk et al. (2004), are stated
below. A brief outline of their proofs is given in Appendix A.

Theorem 6.1 (Sufficient condition). Let G = (V,E) be a DAG, and let V ′ ⊂ V .
If every connected component of (Gc)V \V ′ , the subgraph of Gc induced by V \V ′,
contains an odd cycle, then the parametrization map φG is generically finite-to-
one when restricted to the domain Θ(V ′).

The necessary condition given next makes references to the graphs Gcon and
G|L,cov that were defined in the introduction.
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Theorem 6.2 (Necessary condition). Let G = (V,E) be a DAG, and let V ′ ⊂
V . In order for the restriction of φG to the domain Θ(V ′) to be generically
finite-to-one, it is necessary that the following two conditions both hold:

(i) Let G̃c
con = (V \ V ′, Ẽcon) be the subgraph of Gc

con induced by V \ V ′. If

dcon is the number of connected components in the graph G̃c
con that do not

contain any odd cycle, then |Ẽcon| − |E| ≥ dcon.

(ii) Let G̃c
|L,cov = (V \ V ′, Ẽ|L,cov) be the subgraph of Gc

con induced by V \ V ′.

If dcov is the number of connected components in the graph G̃c
|L,cov that

do not contain any odd cycle, then |Ẽ|L,cov| − |E| ≥ dcov.

While Theorems 6.1 and 6.2 may be useful in some contexts, models in which
latent variables are parents to only some of the observables deserve a more in-
depth treatment in future work. In particular, it would be natural to seek ways
to combine the results of Stanghellini and Wermuth (2005) and the present
paper with the work of Foygel et al. (2012) and Drton and Weihs (2015).

Appendix A: Proofs

Proof of Lemma 1.1. Wemay assume d ≥ n, otherwise Jf is never of full column
rank. The implication (i) ⇒ (ii) is obvious.

To show (ii) ⇒ (iii), suppose for contradiction that Jf is not generically of
full rank. Since f is polynomial, we then know that Rank(Jf ) = r < n generi-
cally, that is, outside a proper algebraic subset S′ ⊂ Rn the rank is constant r.
By the rank theorem (Rudin, 1976, p. 229), for every point s ∈ S \ (S′ ∪ S̃), we
can choose an open ball B(s) that contains s, is a subset of S \ (S′ ∪ S̃) and for
which the restricted map f |Bs has fibers of dimension n− r > 0, contradicting
(ii).

It remains to show (iii) ⇒ (i). We observe that since f is a polynomial we
can assume S = Rn. We then show that the set of points with an infinite fiber,
denoted

Ff := {s ∈ Rn : |Ff (s)| = ∞},

is contained in a proper algebraic subset of Rn. We note that it suffices to assume
n = d, for without loss of generality, we can permute the d component functions
of f and assume that π ◦ f : Rn −→ Rn has a generically full rank Jacobian
matrix, where π is the projection onto the first n coordinates. Then Ff ⊂ Fπ◦f .

Now, assume d = n, and let C = {s ∈ Rn : det Jf (s) = 0} be the set of critical
points of f , where Jf is the Jacobian matrix of f . Note that by assumption C
is a proper algebraic subset of Rn.

Claim. If y ∈ Rn is a point such that |Ff (y)| = ∞, then Ff (y) ∩ C �= ∅.

Proof of the Claim. If an algebraic set like Ff (y) is infinite, then it has dimen-
sion k > 0. By semialgebraic stratification (Basu et al., 2006), one can see that
there exists an open set U ⊂ Rk and a differentiable map g : U −→ Ff (y) such
that the Jacobian of g has full rank on U . If Ff (y) ∩ C = ∅, then the chain
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rule yields that the composition f ◦ g : U → {y} has Jacobian of positive rank.
This, however, is a contradiction because f ◦ g is a constant function. Hence,
Ff (y) ∩ C �= ∅.

The claim implies that Ff ⊂ f−1(f(C)) ⊂ f−1(f(C)), where f(C) is the

Zariski closure of the semialgebraic set f(C). Since f(C) is algebraic, so is
f−1(f(C)) given that f is a polynomial. To finish the proof we only need
to show that f−1(f(C)) has dimension less than n, which is equivalent to
f−1(f(C)) �= Rn. By Sard’s theorem (Basu et al., 2006, p. 192), f(C), and
thus also f(C), has dimension less than n. If f−1(f(C)) = Rn, then the in-
verse function theorem, which says that the restricted map f |Rn\C is a local
diffeomorphism, is contradicted.

Proof of Theorem 1.5. Let m = |V |. For i = 1, 2, let Gi = (V ,Ei) be the
extended DAG of Gi, i.e., V = {0, 1, . . . ,m}, and Ei = Ei ∪ {0 → v : v ∈
{1, . . . ,m}}. By the well-known characterization that two DAGs are Markov
equivalent if and only if they have the same skeleton and v-structures (Pearl,
2009), it is easy to see that G1 and G2 are also Markov equivalent.

For i ∈ {1, 2}, let Θi := REi × diag+m ×Rm. Define

ΦGi

(
(Λ,Ω, δ)

)
= (Im+1 − Λ

T
)−1Ω(Im+1 − Λ)−1,

where Θi := REi × diag+m ×Rm, Λ is a (m+ 1)× (m+ 1) matrix such that

Λvw =

⎧⎪⎨⎪⎩
δw if v = 0, w = 1, . . . ,m,

Λvw if v, w = 1, . . . ,m,

0 otherwise,

and Ω is a diagonal matrix with Ω00 = 1 and Ωvv = Ωvv for v = 1, . . .m.
Then the image ΦGi

(Θi) is the set of all covariance matrices of (m+ 1)-variate

Gaussian distributions that obey the global Markov property of Gi and have the
variance of node 0, which represents the latent variable L, equal to 1. Consider
the projection

π(Σ) = Σ{1,...,m},{1,...,m},

where Σ has its rows and columns indexed by {0, . . . ,m}. Then the parametriza-
tion map for the latent variable model N∗(Gi) equals

φGi = π ◦ ΦGi
. (A.1)

Since G1 and G2 are Markov equivalent, ΦG1
(Θ1) = ΦG2

(Θ2). By Lemma 2.1,
each map ΦGi

is injective on Θi with rational inverse defined on the common
image ΦG1

(Θ1) = ΦG2
(Θ2). From (A.1), we obtain that

φG1 = π ◦ ΦG1
= π ◦ ΦG2

◦ Φ−1

G2
◦ ΦG1

= φG2 ◦
(
Φ−1

G2
◦ ΦG1

)
.

Since Φ−1

G2
◦ΦG1

: Θ1 −→ Θ2 is a diffeomorphism, the chain rule implies that the

Jacobian of φG1 can be of full column rank if and only if the same is true for φG2 .
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Since φGi are polynomial, the two Jacobians either both have generically full
rank or are both everywhere rank deficient. By Lemma 1.1, φG1 is generically
finite-to-one if and only if φG2 is so.

Proof of Lemma 3.3. We first give the structure of J(ϕ̃G) block by block.

(a) “[J(ϕ̃G)]D,{Ψ,Λ,γ}”: For a given pair (v, v) ∈ D,

[ϕ̃G(Λ,Ψ, γ)]vv = ψv +

( ∑
w:v→w∈E

ψwλ
2
vw

)
− γ2

v .

Hence,

[J(ϕ̃G)](v,v),ψw
=

⎧⎪⎨⎪⎩
1 if v = w,

λ2
vw if v → w ∈ E,

0 otherwise,

(A.2)

[J(ϕ̃G)](v,v),λwu
=

{
2λwuψu if v = w,

0 otherwise,
(A.3)

and

[J(ϕ̃G)](v,v),γu
=

{
−2γu if v = u,

0 otherwise.
(A.4)

(b) “[J(ϕ̃G)]E,{Ψ,Λ,γ}”: For any v → w ∈ E,

[ϕ̃G(Λ,Ψ, γ)]vw = −λvwψw +

⎛⎜⎝ ∑
u:v→u∈E
w→u∈E

λvuλwuψu

⎞⎟⎠− γvγw.

Hence,

[J(ϕ̃G)]v→w,ψu =

⎧⎪⎨⎪⎩
−λvw if u = w,

λvuλwu if v → u ∈ E and w → u ∈ E,

0 otherwise,

(A.5)

[J(ϕ̃G)]v→w,λux =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ψw if v = u,w = x,

λwxψx if u = v, u → x ∈ E and w → x ∈ E,

λvxψx if u = w, u → x ∈ E and v → x ∈ E,

0 otherwise,

(A.6)

and

[J(ϕ̃G)]v→w,γu =

⎧⎪⎨⎪⎩
−γw if v = u,

−γv if w = u,

0 otherwise.

(A.7)
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(c) “[J(ϕ̃G)]N,{Ψ,Λ,γ}”: For any v �→ w ∈ N ,

[ϕ̃G(Λ,Ψ, γ)]vw =

⎛⎜⎝ ∑
u:v→u∈E
w→u∈E

λvuλwuψu

⎞⎟⎠− γvγw. (A.8)

Hence,

[J(ϕ̃G)]v �→w,ψu =

{
λvuλwu if v → u ∈ E and w → u ∈ E,

0 otherwise,
(A.9)

[J(ϕ̃G)]v �→w,λux =

⎧⎪⎨⎪⎩
λwxψx if u = v, u → x ∈ E and w → x ∈ E,

λvxψx if u = w, u → x ∈ E and v → x ∈ E,

0 otherwise,

(A.10)
and

[J(ϕ̃G)]v �→w,γu =

⎧⎪⎨⎪⎩
−γw if v = u,

−γv if w = u,

0 otherwise.

(A.11)

With slight abuse of notation, let |Ψ|, |γ|, |Λ| denote the number of free
variables in Ψ, γ and Λ respectively. Considering that |D| = |Ψ| and |E| = |Λ|,
we must have that |N | ≥ |γ| since J(ϕ̃G) is a tall matrix. Hence, if [J(ϕ̃G)]N,γ

is generically of full column rank, then there exists a subset N ′ ⊂ N such
that |N ′| = |γ| and the determinant of J(ϕ̃G)N ′,γ is a nonzero polynomial in
the variables of γ, in consideration of (A.11). Now it suffices to show that the
(2m+ |E|)× (2m+ |E|) square submatrix [J(ϕ̃G)]{D,E,N ′},{Ψ,Λ,γ} is generically
of full rank.

Since the concerned matrix has polynomial entries, we need to show that the
determinant of [J(ϕ̃G)]{D,E,N ′},{Ψ,Λ,γ} is a nonzero polynomial. To this end, it
is sufficient to show that the determinant is a nonzero polynomial in the entries
of (Λ, γ) when we specialize ψ1 = · · · = ψm = 1. Noting that |Ψ| + |Λ| + |γ| =
|D|+ |E|+ |N ′|, let P denote the set of all permutation functions mapping from
the set D∪E∪N ′ to the set of free variables in Λ, Ψ and γ. Choose any ordering
of the elements of domain and codomain so as to have a well-defined sign for
the permutations. Then by Leibniz’s formula, we have

det
(
[J(ϕ̃G)]{D,E,N ′},{Ψ,Λ,γ}

)
=

∑
σ∈P

sgn(σ)
∏

s∈D∪E∪N ′

J(ϕ̃G)s,σ(s).

Let P̃ be the subset of all permutations σ ∈ P with σ((v, v)) = ψv for all
(v, v) ∈ D and σ((v, w)) = λvw for all (v, w) ∈ E. Then we obtain that

det
(
[J(ϕ̃G)]{D,E,N ′},{Ψ,Λ,γ}

)
=

∑
σ∈P̃

sgn(σ)
∏

s∈D∪E∪N ′

J(ϕ̃G)s,σ(s) +
∑

σ∈P\P̃

sgn(σ)
∏

s∈D∪E∪N ′

J(ϕ̃G)s,σ(s)
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= ±det
(
J(ϕ̃G)N ′,γ

)
+

∑
σ∈P\P̃

sgn(σ)
∏

s∈D∪E∪N ′

J(ϕ̃G)s,σ(s), (A.12)

where the equality in (A.12) follows from (A.2), (A.6) and the fact that ψ1 =
· · · = ψm = 1. We also deduce from (A.2)–(A.11) that every summand in the
second term of (A.12) is either zero or a polynomial term involving free variables
of Λ. In contrast, det

(
J(ϕ̃G)N ′,γ

)
is a nonzero polynomial only in free variables

of γ and can thus not be canceled by the second term in (A.12).

Proof for Lemma 5.4. We first prove (i). SinceN∗(G) is generically finitely iden-
tifiable by Theorem 1.3, there exists an algebraic subset Ξ′ such that for all
θ ∈ Θ \ Ξ′, |FφG

(θ)| < ∞. Define Ξ to be the union of Ξ′ and the set of triples
(Λ,Ω, δ) ∈ R2m+|E| with at least one coordinate δi = 0. Let Σ0 = φG(Λ0,Ω0, δ0)
and

S = (sij) := (Im − ΛT )Σ0(Im − Λ). (A.13)

Then for 1 ≤ i < j ≤ m,

sij =
∑

1≤k,k′≤m

λki[Σ0]kk′λk′j −
∑

1≤k≤m

[Σ0]ikλkj −
∑

1≤k≤m

λki[Σ0]kj + [Σ0]ij

=

⎧⎪⎨⎪⎩
−

∑
(k,m)∈E

[Σ0]ikλkm + [Σ0]im if j = m,

[Σ0]ij if j < m,

,

where the last equality follows from the fact that λij are nonzero only when
(i, j) ∈ E. Hence, for any four indices 1 ≤ i < j < k < l ≤ m, the tetrads

sijskl − siksjl, silsjk − siksjl

are constant polynomials when l < m and have degree 1 in the variables {λvm :
(v,m) ∈ E} when l = m. The equation system

TETRADS(S) = 0

is a thus a consistent linear system that can be represented as

Cλpa(m),m = c, (A.14)

where λpa(m),m = (λvm)Tv∈pa(m) is the vector of all free Λ variables, C is a

2
(
m−1
3

)
× |pa(m)| matrix and c is a 2

(
m−1
3

)
-vector. Both C and c depend only

on Σ0.
To finish the proof, we now need to show that (A.14) is uniquely solvable

in λpa(m),m. We will aim to contradict |FφG
(θ0)| < ∞ if (A.14) does not have

a unique solution. Note that the solution set is an affine subspace L ⊂ R|E|.
For a contradiction, suppose that L is of positive dimension. Upon substituting
Λ = Λ0 into (A.13), we obtain

S0 = (s0ij) = (Im − ΛT
0 )Σ0(Im − Λ0),
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and in consideration of (5.3) in Theorem 5.2, it must be true that

s0iis
0
jk − s0iks

0
ji > 0, for all i �= j �= k.

We may then pick an open ball B(Λ0) such that for all solutions Λ ∈ L∩B(Λ0),
the matrix S = (sij) defined by (A.13) satisfies

siisjk − siksji > 0 , for all i �= j �= k.

It follows that L∩B(Λ0) is an infinite set whose elements Λ all make the matrix
(Im − ΛT )Σ0(Im − Λ) a Spearman matrix. Hence, the system

(Im − ΛT )Σ0(Im − Λ) = Ω + δδ′

has infinitely many solutions, contradicting |FφG
(θ0)| < ∞.

The proof of (ii) is analogous. We first let Υ0 = ϕG(Λ0,Ψ0, γ0) and define

S̃ = (s̃ij) = (Im − Λ)−1Υ0(Im − ΛT )−1. (A.15)

Noting that in this case (Im − Λ)−1 = Im + Λ, it can be easily seen that

TETRADS(S̃) = TETRADS
(
(Im − Λ)−1Υ0(Im − ΛT )−1

)
= 0

is a linear system in the variables {λ1v : v ∈ ch(1)}. Similar to the above
arguments, we may use Theorem 1.3 and Theorem 5.3 to prove by contradiction
that the system can only have a unique solution in {λ1v : v ∈ ch(1)}.

Proof of Theorems 6.1 and 6.2. For Theorem 6.1, one can partition the Jaco-
bian matrix J(ϕ̃G) of ϕ̃G as in (3.7), only with γ replaced by γV \V ′ = {γv : v ∈
V \V ′}. In analogy with Lemma 3.3, it can be shown that Jϕ̃G

is of column full
rank if [J(ϕ̃G)]N,γV \V ′ is. The reasoning is then analogous to that in the proof
of Theorem 1.3, the main step being the application of Lemma 3.2 where the
graph defining the considered map becomes (Gc)V \V ′ .

The proof of Theorem 6.2 is analogous to the proof of Theorem 1.4. The only
change is to replace Gc

con, G
c
|L,cov, γ and δ by G̃c

con, G̃
c
|L,cov, γV \V ′ and δV \V ′ ,

respectively.
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