Abstract
We consider a natural local dynamic on the set of all rooted planar maps with $n$ edges that is in some sense analogous to “edge flip” Markov chains, which have been considered before on a variety of combinatorial structures (triangulations of the $n$-gon and quadrangulations of the sphere, among others). We provide the first polynomial upper bound for the mixing time of this “edge rotation” chain on planar maps: we show that the spectral gap of the edge rotation chain is bounded below by an appropriate constant times $n^{-11/2}$. In doing so, we provide a partially new proof of the fact that the same bound applies to the spectral gap of edge flips on quadrangulations as defined in [8], which makes it possible to generalise the result of [8] to a variant of the edge flip chain related to edge rotations via Tutte’s bijection.
Citation
Alessandra Caraceni. "A polynomial upper bound for the mixing time of edge rotations on planar maps." Electron. J. Probab. 25 1 - 30, 2020. https://doi.org/10.1214/20-EJP519
Information