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A polynomial upper bound for the mixing time of edge
rotations on planar maps*
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Abstract

We consider a natural local dynamic on the set of all rooted planar maps with n

edges that is in some sense analogous to “edge flip” Markov chains, which have been
considered before on a variety of combinatorial structures (triangulations of the n-gon
and quadrangulations of the sphere, among others). We provide the first polynomial
upper bound for the mixing time of this “edge rotation” chain on planar maps: we show
that the spectral gap of the edge rotation chain is bounded below by an appropriate
constant times n−11/2. In doing so, we provide a partially new proof of the fact that the
same bound applies to the spectral gap of edge flips on quadrangulations as defined
in [8], which makes it possible to generalise the result of [8] to a variant of the edge
flip chain related to edge rotations via Tutte’s bijection.
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1 Introduction

This work is concerned with estimating the mixing time of a particular Markov chain
on the set of all possible (rooted) planar maps with n edges.

Many different Markov chains with a geometric flavour have been considered on a
variety of interesting state spaces given by the sets of all possible planar combinatorial
structures of a certain type and size – e.g. plane trees, binary trees, triangulations of the
n-gon, lattice triangulations, quadrangulations of the sphere, etc.

A natural family of Markov chains which have sparked a lot of interest, both because
of their deceptive simplicity and their potential applications (e.g. to systematic biology
[2]), is that of “edge flip” chains. The archetypal example of an edge flip chain is Aldous’
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so-called triangulation walk [1], defined on the state space of all possible triangulations of
a convex n-gon (i.e. of maximal configurations of non-crossing diagonals). Its transitions
are edge flips in the following sense: given a triangulation of the n-gon, a single step
of the chain consists in choosing a diagonal uniformly at random and, with probability
1/2, replacing it with the other diagonal of the unique quadrilateral formed by the two
triangles adjacent to it (see Figure 1a).

Giving a sharp estimate for the mixing time of the triangulation walk as a function of
n is a notoriously difficult open problem. The lower bound of Ω(n3/2) shown by Molloy,
Reed and Steiger [11], which is in fact Aldous’ original conjecture for the actual growth
rate of the relaxation time, is still quite distant from the best upper bound to date, which
is the O(n5 log n) obtained by McShine and Tetali [10].

But triangulations of the n-gon are not the only structures that are well-suited to
supporting an edge flip chain, though they provide perhaps the simplest possible example;
edge flip dynamics have been considered for example on lattice triangulations [6, 7, 13]
and rectangular dissections [5, 4]. Recently, Alexandre Stauffer and the author proved
a polynomial upper bound for the mixing time of edge flips on quadrangulations of the
sphere [8].

Some very natural classes of combinatorial objects able to support edge flip chains are
specific sets of so-called planar maps, where by planar map we mean a connected, locally
finite planar (multi)graph endowed with a cellular embedding in the two-dimensional
sphere, considered up to orientation-preserving homeomorphisms of the sphere itself.
For example, one might consider triangulations of the sphere with n edges – that is,
planar maps whose faces have degree 3 – rather than triangulations of the n-gon. An edge
flip would then consist in choosing an edge uniformly at random and, with probability
1/2, replacing it with the other diagonal of the quadrilateral formed by the two faces
adjacent to it – or, if the edge is adjacent to only one face, leaving it unchanged (see
Figure 1b). This chain has been considered by Budzinski in [3], where he shows a lower
bound of Ω(n5/4) for the mixing time.

Analogous chains can be defined on the set of p-angulations of the sphere with n

edges for any p > 3: one chooses an edge uniformly at random and, if it is adjacent to two
distinct faces, erases it to obtain a (2p−2)-angular face f , and then draws an edge joining
the i-th corner of f , where i is chosen uniformly at random in {0, 1, . . . , 2p − 3} (and
corners are labelled, say, clockwise), to corner i+ p− 1 (mod 2p− 2), so as to recreate
two p-angular faces within f . Some care must be taken (and some non-canonical choices
made) in dealing with edges that are adjacent to a single face on both sides.

An especially attractive case is p = 4, namely, that of quadrangulations (see Figure 1c).
In this case, an edge separating two faces, if flipped, will be replaced by one of three
edges cutting the hexagon created in its absence “in half”, chosen uniformly at random.
In particular, it remains unchanged with probability 1/3. It is therefore natural to define
a flip for a quadrangulation edge adjacent to the same face on both sides as leaving
the edge unchanged with probability 1/3 and, with probability 2/3, replacing it with an
edge joining its degree 1 endpoint to the unique vertex of the face which was not an
endpoint of the original edge (see Figure 8, and more generally Section 4 for a detailed
description of the dynamics).

The case of quadrangulations of the sphere is interesting for multiple reasons. One is
that it is still very simple and preserves a strong similarity to the case of edge flips on
triangulations of the sphere and of the n-gon. Another is the fact that quadrangulations
in particular come with a very handy toolset, including Schaeffer-type bijections with
labelled plane trees [12]: they fall within the scope of so-called Catalan structures, that
is, combinatorial structures whose enumeration is closely related to Catalan numbers
(e.g. plane trees, triangulations of the n-gon, binary trees etc.); as a consequence,
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(a) (b) (c)

Figure 1: An edge flip performed on a triangulation of the octagon (a); an edge flip on a
rooted triangulation of the sphere – drawn so that the infinite face lies to the right of the
root edge (b); an edge flip on a quadrangulation of the sphere, where both possible new
alternative edges are drawn, dashed, in different colours (c).

opportunities arise for a number of possible Markov chain comparisons.
One such comparison, made with a “leaf translation” Markov chain on labelled plane

trees, is what made it possible to show the main result of [8], namely an upper bound of
order n11/2 for the relaxation time of the edge flip Markov chain on quadrangulations of
the sphere.

It should now be mentioned that, in order to have the Schaeffer bijection with labelled
plane trees and to have Catalan numbers emerge when enumerating quadrangulations,
one considers pointed, rooted quadrangulations of the sphere – that is, quadrangulations
endowed with a distinguished vertex and a distinguished oriented edge. Redefining
the dynamics to take the pointing and rooting into account poses no difficulties; the
choice made in [8] is that of performing edge flips exactly as described, preserving
the pointing and the orientation of the root edge when flipped (Figure 8). It seems
quite reasonable that pointing and rooting should not be truly relevant, and indeed the
pointing can be quickly dealt with and does not appear in the results of [8]. As for the
rooting, however, it is worth noting that its role is more central. While for example it is
natural to conjecture that the upper bound of O(n11/2) for the relaxation time proved in
[8] should also hold for the mixing time of – say – a Markov chain that censors flips of
the root edge, or that excludes the root edge from the set of “flippable” edges, this fact
is not easy to show; moreover, the proof in the aforementioned paper relies heavily on
some ad hoc geometric constructions that build upon the Schaeffer bijection, and root
edge flips feature prominently in its canonical paths, so that adapting the proof is utterly
non-trivial.

On the other hand, the argument in [8] does have the potential for generalisation,
and one may very well wish to apply variants of it to other edge flip Markov chains and
to other classes of planar maps.

We have mentioned how one could consider edge flips on p-angulations for p 6= 4;
one other avenue for generalisation would be to consider, rather than edge flips on
p-angulations, dynamics on the set of all planar maps with – say – a fixed number of
edges, with no restrictions on face degrees. This is exactly what we propose to do in
this paper. We shall consider a natural dynamic on planar maps that, in analogy to edge
flips, involves the local manipulation of a single random edge at each step. What we
will introduce is a Markov chain which we will call the edge rotation chain on (rooted)
planar maps with n edges. A single step consists essentially in choosing an oriented edge
uniformly at random and sliding its “tip” one step to the left, or one step to the right, or
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Figure 2: An informal look at the edge rotation chain on planar maps with n edges; in
each case, an oriented edge is shown, together with the two (or one, in the last picture)
faces adjacent to it. One can rotate it clockwise or counterclocwise, which in some
cases may create a loop (second picture). If the edge is itself a loop enclosing a face
of degree 1 (third picture) one of the two edge rotations causes it to “detach itself”
from the boundary of its external face and create a new degree 1 vertex. If the edge
is oriented towards an endpoint of degree 1 (fourth picture) then rotating it in either
direction eliminates that endpoint in favour of a loop. A complete presentation (not in
terms of the rotated oriented edge but of the corner that the tip “rotates through”) is
given in Section 3.

leaving everything unchanged (each with probability 1/3), see Figure 2. This description,
though it should give the right general idea, needs to be formalised and amended to take
into account some rather degenerate cases (e.g. loops and degree 0 vertices); carefully
reading Section 3 should make it apparent how the more complex presentation given
there is truly the one sensible formalisation of the edge rotation chain.

Note that, by considering the edge rotation chain on rooted planar maps, we can
take advantage of how general rooted planar maps with a fixed number of edges can
themselves be thought of as Catalan structures. Indeed, thanks to Tutte’s bijection [14]
we shall directly relate the edge rotation chain to a version of the edge flip Markov chain
on rooted quadrangulations where the quadrangulation root edge is not included in the
set of “flippable” edges.

We will then proceed to give an upper bound that will apply to both the mixing time of
the edge rotation chain and that of the variant edge flip chain on rooted quadrangulations.
Our main result is the following:

Theorem 1.1. Let νn and µn be the spectral gaps of the (non-root-flipping) edge flip
Markov chain F̃n on the set Qn of quadrangulations with n faces and of the edge rotation
Markov chain Rn on the set Mn of rooted planar maps with n edges, respectively. We
have νn = µn, and there are positive constants C1, C2 (independent of n) such that

C1n
−5/4 ≥ νn ≥ C2n

−11/2

for all n. Consequently, the mixing time of both chains is O(n13/2).

The proof will combine part of the approach of [8] with some new ideas, which
render it almost completely independent of Schaeffer’s bijection: we shall construct
probabilistic canonical paths on the set of rooted quadrangulations rather than the set
of plane trees, thus making the approach more readily generalisable.

Section 2 introduces relevant objects – maps, quadrangulations – and contains a
brief description of Tutte’s bijection, which will be used in Section 4 to relate the edge
rotation chain presented in Section 3 to an edge flip chain.

The rest of the paper will develop the necessary tools to prove Theorem 1.1. The
argument is based on an algorithm to grow quadrangulations uniformly at random by
“adding faces” one at a time (Section 5) and a construction of probabilistic canonical
paths (Section 6) which is truly the core of this paper. Section 7 concludes the proof.
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c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1 c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2

c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4

c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5

c6c6c6c6c6c6c6c6c6c6c6c6c6c6c6c6c6

c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8c8c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7

c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9

Figure 3: A rooted planar map drawn in the plane in such a way that the infinite face
contains the root corner. A face of degree 9 is shaded and the labels c1, . . . , c9 placed
along its clockwise contour.

2 Quadrangulations, general planar maps and edge flips

Definition 2.1. A planar map is a connected, locally finite planar (multi)graph endowed
with a cellular embedding in the two-dimensional sphere, considered up to orientation-
preserving homeomorphisms of the sphere itself.

Of course, planar maps inherit terminology and features from graphs – we shall speak
of their vertices and edges – but with their built-in planar embedding comes the added
perk of having well defined faces (i.e. the connected components of the complement
of the image of vertices and edges via the cellular embedding, see Figure 3). It will
often prove useful to endow an edge with an orientation (each edge has two possible
orientations). Given an oriented edge ~e in a map m whose endpoints are a vertex e−

(the tail) and a vertex e+, we shall informally say that the corner corresponding to ~e is a
suitably small neighbourhood of the vertex e− intersected with the face lying directly to
the right of ~e.

We will speak of corners as “belonging to” faces (the corner corresponding to ~e

belongs to the face lying directly to the right of ~e) and also to vertices (the corner
corresponding to ~e is a corner of vertex e−). Corners of a single vertex and corners of a
single face have two natural cyclic orderings: clockwise and counterclockwise. Given
a face f of a map m, we shall call the cyclic sequence (ci)

deg f
i=1 of all corners of f in

clockwise (resp. counterclockwise) order, where the index is considered modulo deg f , a
clockwise (resp. counterclockwise) contour of f ; the number deg f of corners of f is the
degree of the face f . When mentioning a contour of the face f without specifying its
direction, we shall be referring to its clockwise contour.

A rooted planar map is a pair (m, c), where m is a planar map and c is a corner
of m; since – as explained above – there is a direct correspondence between corners
and oriented edges, we may also see a rooted planar map as being endowed with a
distinguished oriented edge rather than a distinguished corner: we will adopt either
point of view, depending of what is most convenient.
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Figure 4: Given a rooted planar map (black vertices and edges in the picture), the
corresponding quadrangulation (red and black vertices, red dashed edges) has one
face for each edge of the original map (look for example to the shaded red face, which
encloses the single black edge joining its two black vertices). The map is recovered
from the quadrangulation by drawing the edge in each face, which joins the two corners
adjacent to black vertices.

We shall call the vertex that the root corner c belongs to, i.e. the tail of the root edge,
the origin of the rooted map (m, c); we shall often denote the origin of a map by ∅. Note
that all maps we will refer to in this paper will be rooted; we will therefore, for the sake
of simplicity, usually denote them by a single letter and not as a pair: we will write Mn

for the set of all rooted planar maps with n edges and will write m ∈ Mn to indicate that
m is a planar map with n edges and is also endowed with a root corner/edge, which will
normally be denoted by ρ.

Definition 2.2. A quadrangulation is a planar map all of whose faces have degree 4. We
shall write Qn for the set of all rooted quadrangulations with n faces.

Note that a map all of whose faces are quadrangles is bipartite, and therefore devoid
of loops (a fact that will be used repeatedly throughout this paper); it still may have
multiple edges between the same pair of vertices, and also edges that belong to only
one face rather than two, which we call double edges. We call quadrangulation faces
containing a double edge degenerate faces.

Moreover, it is a classical result of Tutte [14] that we have |Qn| = |Mn|; and in fact,
Tutte himself provides a simple explicit bijection Φ : Mn → Qn, which we shall briefly
describe here before making use of it for our purposes.

Given a rooted planar map m ∈ Mn, build a new rooted planar map as follows:

• draw one vertex within each face of m;

• connect each newly drawn vertex to all corners in the face it belongs to (draw new
edges in such a way that they do not cross);

• erase all original edges of m;

• there is one edge drawn by this procedure that crosses the original root corner of
m; let that edge be the new root edge, oriented away from the original root corner.
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Figure 5: The corners c, c−, c+ within the face fc; the edge e= drawn by the procedure
is dashed. Notice that e= is a loop if e− and e+ are corners of the same vertex, which
happens when deg fc = 2 and when the degree of the vertex of c is 1 (second and fourth
image).

The procedure described above yields a rooted planar map Φ(m) which has |V (m)| +
|F (m)| = n + 2 vertices and 2|E(m)| = 2n edges, hence n faces, each of which can be
shown to be a quadrangle; in other words, Φ(m) ∈ Qn.

An inverse procedure can be described just as easily: given a quadrangulation q ∈ Qn,

• partition the set of vertices of q into two parts: we shall call real vertices those at
even graph distance from the origin and face vertices those at odd distance (notice
that real vertices are only adjacent to face vertices and vice-versa, so each face
has two corners of real vertices and two corners of face vertices);

• within each face, draw an edge joining its two corners belonging to real vertices;

• erase all face vertices and all original edges of q;

• root the newly formed map in the one corner that the original root edge of q was
issued from.

The map resulting from this procedure, which clearly has n edges, one for each face of q,
is none other than Φ−1(q). Indeed, we have the following:

Theorem 2.3 (Tutte). The mapping Φ is a bijection between the set Mn of rooted planar
maps with n edges and the set Qn of rooted quadrangulations with n faces; it induces a
correspondence between the set of edges of each map m and the set of faces of Φ(m).

3 The edge rotation Markov chain on Mn

Let m be a map in Mn, let c be a corner of m other than the root corner and let s be
an element of {=,+,−}. Construct a map mc,s ∈ Mn as follows:

• the corner c belongs to a face fc of m; let c− and c+ be the corners immediately
before and immediately after c in a clockwise contour of fc;

• let e− and e+ be the edges of fc joining c− to c and c to c+ respectively; in the
case where deg fc = 2, in which c− = c+, e− and e+ are the two edges forming the
boundary of fc, and they are named in such a way that fc lies to the right of the
edge e+, oriented away from c (Figure 5); in the case where deg fc = 1, in which
c = c− = c+, we set e− = e+ to be the one loop which constitutes the boundary of
fc;

• if deg fc > 1, draw an edge e= joining corner c− to corner c+ (in the case where
c− = c+ and the case where the vertex of c has degree 1, notice that e= will be a
loop);

• if c− = c = c+ (that is if deg fc = 1) draw a new vertex within the loop e− and join it
to the vertex of c by a new edge e=;
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Figure 6: The three maps of the form mc,s as constructed from m ∈ Mn.

• notice now that, whatever the case for deg fc, one new edge e= has been drawn
and a triangular face containing c, whose boundary edges are {e=, e−, e+} (which
are not necessarily all distinct), has been created;

• finally, erase the edge es (and any vertices adjacent only to es); if s = ± and the
root corner ρ of m is in {c−, c+}, set the new root corner to be the part of ρ that did
not belong to the triangular face containing c created by drawing e=; otherwise,
set the new root corner to be the one that contains the original corner ρ (which
is “larger” than the original only if es is an edge adjacent to ρ). The new rooted
map obtained in this way is mc,s; it has exactly as many edges as m and therefore
belongs to Mn.

We shall say that mc,s is obtained from m via an edge rotation; though rotating
edges is not explicitly mentioned in the construction above, the reason for the name
should be clear: except for some rather degenerate cases, the whole construction –
when s ∈ {−,+} – essentially consists of “rotating” the edge es within the corner cs by
“detaching it” from the vertex of c and instead setting its other endpoint to be within the
next corner in the clockwise/counterclockwise contour of fc, thus effectively turning it
into the new edge e= (see Figure 6). Even the case where e− = e+, which turns an edge
with an endpoint of degree 1 into a loop and vice-versa, can be thought of as an edge
rotation of sorts.

We can naturally identify the edge es in m with the “rotated edge” e= in mc,s (when
s ∈ {+,−}) and thus have a natural identification between edges of m and edges of mc,s.
Faces and vertices cannot be as readily identified between m and mc,s, because the
number of faces and vertices may increase or decrease; and, even though the number of
corners remains unchanged after an edge rotation, defining a 1-to-1 correspondence is
not entirely canonical, although there is one that is compatible with our choice of the
rerooting, in the sense that it allows us to interpret the new choice of the root corner as
“leaving it unchanged”.

Corners other than those involving the vertices of c, c−, c+ are of course untouched,
and will be denoted by the same symbols in m and mc,s. If s ∈ {−,+}, then we shall
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identify c− and c+ with the two (not necessarily distinct) corners joined by the newly
drawn edge e= in the face lying directly to the right of e=, oriented from c− to c+ (again,
see Figure 6).

Notice that, if s = +, then the number of corners around the vertex v+ of c+ is
unchanged; if those corners were c+, c1, . . . , ck in clockwise order around v+, starting
with c+ in the map m, we will identify them with the k + 1 corners around the vertex of
c+ in mc,s, having already identified c+, by just keeping the same order. As for corners
around the vertex v of c and the vertex v− of c−, if c 6= c+ and c 6= c−, the former are
decreased by one unit and the latter increased by one unit. Corners around v in m other
than c are identified with corners around v in mc,s in the natural way, with one corner
having been “enlarged” to include what used to play the role of corner c. As for corners
around v−, they are identified as with corners around v+, starting with the new corner
c− and proceeding clockwise; at the very end, the one final corner left unlabelled is
identified with c.

The dynamic on maps we shall be considering throughout this paper is given by a
Markov chain Rn on Mn which is such that, assuming Rnk = m for some m ∈ Mn, we
have Rnk+1 = mc,s, where c and s are independent random variables, s being uniformly
distributed in {=,+,−} and c being a corner of m other than its root corner, chosen
uniformly at random; in other words, transitions probabilities for Rn are of the form

pR(m,m′) =
1

3(2n− 1)

∑
c∈C(m)\ρ

(1m′=mc,+ + 1m′=mc,− + 1m′=m) , (3.1)

where C(m) is the set of all corners of m and ρ is its root corner.

Lemma 3.1. The Markov chain Rn is reversible, aperiodic and irreducible.

Proof. Aperiodicity is clear, as pR(m,m) > 0 for all m. Moreover, we have pR(m,m′) =

pR(m′,m) for all m 6= m′, because each clockwise rotation can be inverted via a cor-
responding counterclockwise rotation, and vice-versa. More precisely, we can exhibit
an involution f from the set {(m, c, s) | m ∈ Mn, c ∈ C(m) \ ρ, s = ±} to itself such that
f(m, c, s) = (mc,s, c′,−s) for some corner c′ of mc,s. Providing such an involution implies
that, for each m 6= m′ in Mn, there exists a bijection between the set of non-root corners
c of m such that mc,+ = m′ and the set of non-root corners c′ of m′ such that m′ c

′,− = m,
which in turn implies pR(m,m′) = pR(m′,m) thanks to expression (3.1).

In order to properly define the mapping f , all one needs is to carefully go through the
construction of the edge rotation chain in the previous section. Given m, c, s, consider
the intermediate map m̃ obtained from m by adding the edge e=, with its triangular face
T whose boundary edges are e=, e+, e−.

If e=, e+, e− are distinct, label the three corners of T as c′=, c
′
+, c
′
−, according to which

edge lies opposite. Notice that c′= is naturally identified with corner c in m and that
c′s has a natural identification with a corner c′ of mc,s, as erasing its opposite edge es
from m̃ does not in any way affect c′s. Set f(m, c, s) = (mc,s, c′,−s), and remark that
the intermediate map one constructs in performing an edge rotation with corner c′

and sign −s on the map mc,s is exactly m̃ (it is obtained by redrawing the original es);
moreover, a quick check (see Figure 7) shows that the sign −s is appropriate in that it
selects the edge originally labelled e= in m̃ as the one to be erased, and therefore its
opposite corner c as the distinguished one in the triple f(mc,s, c′,−s). In other words,
f(mc,s, c′,−s) = (m, c, s).

If the face T does not have three distinct edges, this means that e− = e+ (e=, being
the newly drawn edge, cannot coincide with either). Now, suppose e= is a double
edge of T (i.e. c was the unique corner within a degree 1 face); in this case, set
f(m, c, s) = (mc,s, c′,−s), where c′ is the corner of the degree 1 endpoint of e=. If e= is
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(m, c,+) (mc,+, c′,−)m̃

←→ ←→

(m, c,±) (mc,+, c′,∓)m̃

←→ ←→

Figure 7: Above, inverting an edge rotation in the case where the triangular face T in
the intermediate map m̃ has three distinct edges. Notice how this case does also cover,
for example, the one where c+ = c− and e= is a loop, which amounts to identifying some
vertices, but still involves a triangular face T with three distinct boundary edges. Below,
the case where T has only two distinct edges, which corresponds to edge rotations
involving the corner of a degree 1 vertex or the corner within an empty loop.

the external loop of T (i.e. c was the unique corner of a vertex of degree 1), let c′ be the
corner within the loop e= in mc,s, where the internal edge e+ = e− of T has been erased,
and again set f(m, c, s) = (mc,s, c′,−s). In both cases, constructing the quadrangulation
(mc,s)c

′,−s involves again the intermediate quadrangulation m̃ and the erasure of either
the internal double edge of T (first case) or its boundary loop (second case), hence
f(mc,s, c′,−s) is of the form (m, c′′, s). Moreover, the two cases become interchanged,
and the construction yields c′′ = c.

This concludes the proof of reversibility (with respect to the uniform distribution on
Mn).

As for irreducibility, we shall show that every map m ∈ Mn can be turned into the map
m0 made of n nested loops, rooted in the corner within the central loop, via a sequence
of edge rotations.

Given m ∈ Mn, consider the face fρ containing the root corner ρ of m. Suppose it has
clockwise contour ρ, c1, . . . , ck, with k ≥ 1: by considering the edge-rotated map mc1,−

we can reduce the degree of fρ by 1 (by which we mean the the face containing the
root corner in mc1,− has degree k rather than k + 1). We can therefore reduce m, via
a sequence of edge rotations, to a map whose root corner lies within a loop (i.e. such
that the root edge is a loop). Now, given any map m̃ such that the root edge is a loop,
consider the first corner c in counterclockwise order around the origin, starting with
the root corner ρ, such that c lies within a face fc of degree strictly more than 2, whose
clockwise contour we will call c, c1, . . . , ck (with k > 1). Taking the map m̃c1,− decreases
the degree of the face fc by 1: repeating this operation yields a map such that the root
edge is a loop and all corners around the origin lie within faces of degree 1 or 2. Such a
map can only be m0: if one draws it on the plane in such a way that the root corner lies
within the infinite face, so that the root edge is an “external” loop, one finds that the
finite face adjacent to it is either a degree 1 face – in which case the map has only one
edge – or has degree 2, in which case its boundary is completed by one “internal” loop;
repeating this argument inductively identifies the map as m0.
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Figure 8: Clockwise and counterclockwise flips for a simple and a double edge in a
quadrangulation.

4 From edge rotations on maps to edge flips on quadrangulations

We now wish to relate our edge rotation dynamic on planar maps to the Markov chain
of edge flips on quadrangulations as introduced in [8] – or rather, to a slight variant
thereof.

The edge flip Markov chain Fn on the set Qn was introduced in [8] as a chain whose
steps consist in, given a quadrangulation, selecting one of its edges uniformly at random
and then making an independent uniform choice among the following three options:
leaving it unchanged, flipping it clockwise or flipping it counterclockwise. The choice of
the root edge was allowed and flipping the root edge would preserve its orientation.

More formally, given a quadrangulation q ∈ Qn and an edge e of q, we denote by
qe,+ (resp. qe,−), the quadrangulation obtained from q by flipping edge e clockwise
(resp. counterclockwise), by which we mean the quadrangulation given by the following
procedure:

• if e is adjacent to two distinct faces of q, erase e from q (thus obtaining a new
face with exactly 6 corners) and replace it with the edge obtained by rotating e

clockwise (resp. counterclockwise) by one corner (see Figure 8).

• if e is an internal edge within a degenerate face, let v be the vertex of that face
that is not an endpoint of e and let w be the endpoint of e having degree 1; erase e
and replace it with an edge within the same face having endpoints v, w. If e is the
root edge of q, let the newly drawn edge be the root of qe,+ (resp. qe,−), oriented in
the same way as before (with respect to w).

The edge flip Markov chain as originally described has transition probabilities

pF (q, q′) =
1

6n

∑
e∈E(q)

(
1q′=qe,+ + 1q′=qe,− + 1q=q′

)
.

In order to directly relate a dynamic on maps to edge flips on quadrangulations,
however, one is led to consider a variant of the chain Fn that does not allow flipping the
root edge. Indeed, the Tutte bijection Φ assigns very different roles to quadrangulation
vertices at even and odd distance from the origin: since a root flip (at least as described)
would change the parity of the distance to the origin for each vertex in the quadrangula-
tion, the two maps corresponding to the quadrangulation before and after the flip are
potentially completely different from each other.

It therefore becomes necessary to redefine or completely eliminate root edge flips
from the chain Fn; in particular, we shall from here on consider a new edge flip Markov
chain where the choice of the edge to flip is uniform among all edges other than the root
edge. We shall still refer to this as the edge flip Markov chain on Qn and we shall denote
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f+f+f+f+f+f+f+f+f+f+f+f+f+f+f+f+f+ f−f−f−f−f−f−f−f−f−f−f−f−f−f−f−f−f− q

qe,+

qe,−

q qe,+ = qe,−

q qe,+ = qe,−

Figure 9: Clockwise and counterclockwise flips for a simple and a double edge in a
quadrangulation, with the corresponding edge rotations represented by thinner red
edges. Notice how flipping a double edge results in either turning a face vertex into a
real vertex, thus turning a planar map loop into an edge with an endpoint of degree 1 (to
the right, above), or vice-versa (to the right, below).

it by F̃n; its transition probabilities are of the form

pF̃ (q, q′) =
1

3(2n− 1)

∑
e∈E(q)\ρ

(
1q′=qe,+ + 1q′=qe,− + 1q=q′

)
,

where ρ is the root edge of q.

Proposition 4.1. Given a quadrangulation q ∈ Qn with root edge ρ, an edge e ∈ E(q) \ ρ
and s ∈ {+,−}, we have Φ(qe,s) = Φ(q)c,s, where Φ is the Tutte bijection from Section 2
and c is the corner of Φ(q) that corresponds to the edge e of q.

Proof. Consider the case where e is not an internal edge within a degenerate face, but
rather is adjacent to two distinct faces of q, within each of which a map edge is drawn
by the construction Φ. Orient the edge e away from its endpoint at even distance from
the origin and let f− be the face lying to its right and f+ the one lying to its left. If
we take c to be the corner of Φ(q) that the edge e is issued from, it should be clear
that the map edges e− and e+ constructed as a function of c in Section 3 correspond to
quadrangulation faces f− and f+ respectively.

Now consider for example the edge-flipped quadrangulation qe,+; it is clear that,
since e is not the root edge, the parity of distances from the origin is unchanged. The
endpoints of e− are therefore still “real vertices” which need to be joined by a map edge
lying within the quadrangular face next to the flipped edge e: we can draw e− exactly as
before. This is in contrast to the edge e+, which would now cross the flipped edge e, and
therefore needs to be erased. The edge that replaces e+ is an edge e= that would form a
triangle containing c, along with e− and e+, in the original map (left part of Figure 9).

Furthermore, notice that the fact that the root edge is unchanged in qe,s implies that
the root corner of Φ(qe,s) must still be the one that the quadrangulation root edge is
issued from. In order for this to be true in the non-trivial cases where the root corner of
Φ(q) is “split” by the addition of e=, the root corner must become the part of the corner
lying outside the e−, e+, e= triangle, exactly as described in Section 3.

This shows that Φ(qe,s) = Φ(q)c,s when e is not an internal edge within a degenerate
face and s = + (including the case where e= ends up being a loop, which is not explicitly
depicted in Figure 9, but which arises for example if one imagines that the lower
boundary edges of f+ and f− are glued together in q and in qe,+, in the left part of the
figure). The case of s = − is identical.

Now consider the case where the endpoint u of e at odd distance from the origin has
degree 1 in q. This corresponds to its degenerate face having two face vertices and one
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real vertex, and a map loop edge (e− = e+) being drawn within it by the construction Φ.
In this case, we know that qe,s, for s = ±, is the quadrangulation that replaces e with an
edge drawn between u and the other vertex on the external boundary of the degenerate
face. It is immediately apparent that Φ(qe,s) is, indeed, the map which replaces the loop
e− = e+ with an edge e= having a brand new vertex as an endpoint, which is Φ(q)c,s. The
rooting poses no real issues, since e cannot be the root edge of q and the identification
of corners between Φ(q) and Φ(qe,s) is clear.

Finally, the case where the endpoint of e at even distance from the root has degree 1
in q is precisely the inverse of the one above.

We have thus shown that the two Markov chains F̃n and Rn are isomorphic; in
particular, they have the same relaxation and mixing time.

The main result in [8] consisted in the following bounds for the spectral gap of the
Markov chain Fn:

Theorem 4.2 (C., Stauffer). Let γn be the spectral gap of the edge flip Markov chain
Fn on the set Qn of rooted quadrangulations with n faces. There are positive constants
C1, C2 independent of n such that

C1n
− 11

2 ≤ γn ≤ C2n
− 5

4 .

Consequently, the mixing time for Fn is O(n13/2).

While the upper bound above for the spectral gap of Fn immediately yields a lower
bound for the relaxation time of F̃n and therefore Rn, an upper bound for the relaxation
time of F̃n cannot trivially be gleaned from [8]. The rest of this paper will therefore
be devoted to analysing the chain F̃n to obtain an upper bound which applies to the
edge rotation Markov chain. Though the general strategy is not dissimilar to the one
employed in [8], some ad hoc constructions and ideas will be necessary; as a result, we
will have a partially new proof of an upper bound for the relaxation time of the original
chain Fn which (mostly) does not rely on the Cori-Vanquelin-Schaeffer correspondence
with plane trees, and should therefore be better suited for further generalisations.

5 Growing quadrangulations uniformly at random

Consider the following operation which, given a quadrangulation q ∈ Qn (with n > 1)
and a corner c of q, yields a quadrangulation coll(q, c) in Qn−1. First of all, let f be the
face of q containing c and let c1 = c, c2, c3, c4 be a clockwise contour of f . If f has four
distinct vertices (in which case it is non-degenerate, i.e. has four distinct edges), in order
to obtain coll(q, c) we “collapse” f by identifying the edge joining c1 (that is, c) to c2 with
the one joining c4 to c1, and the edge joining c2 to c3 with the one joining c3 to c4 as in
Figure 10 (above), thus identifying the vertices of corners c2 and c4.

Consider now the case where f does not have 4 distinct vertices, and therefore has
exactly 3 (it cannot have fewer as that would imply some of its edges are loops, which
contradicts the fact that q, being a quadrangulation, is bipartite). Now, two corners of f
must belong to the same vertex, and they cannot be consecutive corners (again, that
would imply the existence of a loop), so they are either c1 and c3 or c2 and c4; since in
this case our construction of coll(q, c) will not depend on the specific corner c in f , but
only on f itself, we may assume that c1 and c3 are corners of the same vertex v1, and
that v2 and v4, the vertices of c2 and c4, are distinct. Now, there are two possibilities for
f under this assumption: either it is degenerate (i.e. it has one internal double edge and
either v2 or v4 has degree 1) or it is not, in which case it has four distinct boundary edges.
In both cases, construct coll(q, c1) = coll(q, c2) = coll(q, c3) = coll(q, c4) by identifying the
edge between c1 and c2 with the edge between c4 and c1, as well as the edge between c2
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Figure 10: Collapsing a face in a quadrangulation. Note that we have not marked
any particular corners in the second and third row because there is essentially only
one way to collapse the face f if it has only three distinct vertices, and the resulting
quadrangulation coll(q, c) is the same whatever corner c of f is chosen.

and c3 with the edge between c4 and c3, thus also identifying the two distinct vertices
v2 and v4 as in Figure 10 (second and third row). In the case of a degenerate face, this
procedure is meant to replace f with a single edge by identifying its two boundary edges
with its internal edge (and therefore each other).

Note that we have not yet mentioned how coll(q, c) should be rooted. If the root
corner of q does not belong to f , it is simply preserved; if it belongs to f , then we root
the quadrangulation coll(q, c) in such a way that the root edge is the collapsed image of
the original root edge, oriented as before.

We shall say that two quadrangulations q ∈ Qn and q′ ∈ Qn−1 differ by collapsing a
face if there is a corner c of q such that q′ = coll(q, c).

What we need is a “hierarchy” like the one described for coloured plane trees in
Section 5 of [8], but for quadrangulations, where the adjacency condition of differing by
erasing a leaf is replaced by the one given by collapsing faces. What we wish to produce
is a collection of mappings gn : Qn × Qn−1 → R≥0 with the following properties:

(i) gn(q, q′) = 0 if q′ cannot be obtained from q by collapsing a face;

(ii)
∑
q′∈Qn−1

gn(q, q′) = 1 for all q in Qn;

(iii)
∑
q∈Qn

gn(q, q′) = |Qn|
|Qn−1| for all q′ in Qn−1.

Such a collection of mappings gn can be built explicitly from the mappings fn given in
Section 5 of [8]. In order to do this, we need to briefly recall some notation and standard
results.

Definition 5.1. A labelled tree is a plane tree t (i.e. a rooted planar map with a single
face) endowed with a labelling l : V (t)→ Z such that

• if ∅ is the origin of t, l(∅) = 0;

• for any vertex v ∈ V (t) \ {∅}, |l(v) − l(p(v))| ∈ {1,−1, 0}, where p(v) denotes the
parent of v.

We shall call LTn the set of all labelled trees with n edges, and conventionally set
LT0 = {•} to be the set containing the graph with a single vertex labelled 0.
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We shall also write Q•n for the set of all pairs (q, δ), where q ∈ Qn and δ ∈ V (q), i.e. for
the set of all pointed rooted quadrangulations of the sphere with n faces (note that
the distinguished vertex δ making a quadrangulation pointed is an additional feature
entirely independent of the quadrangulation’s root edge). We shall conventionally define
the set Q0 = {→} as the one containing a rooted planar map with a single edge and
two distinct vertices; as a consequence, Q•0 has two elements. Also by convention, but
consistently with our previous definition, we shall set coll(q, c), where c is any corner in
a quadrangulation q ∈ Q1, to be the “root-only map”→∈ Q0.

Labelled trees (and pointed rooted quadrangulations) will be useful thanks to the Cori-
Vanquelin-Schaeffer correspondence (see [12]), which is an explicit bijective construction
φ : LTn × {−1, 1} → Q•n transforming tree labels into quadrangulation graph distances:
given t ∈ LTn and ε ∈ {−1, 1}, the mapping φ naturally induces an identification between
vertices of t and vertices of φ(t, ε) other than the distinguished vertex such that, if l is
the labelling of t, we have l(v) = dgr(v, δ)− dgr(δ, ∅), where v is interpreted as a vertex of
t in the left hand side of the equation and as a vertex of φ(t, ε) in the right hand side, ∅ is
the origin of φ(t, ε) and δ its distinguished vertex, and dgr is the graph distance on the
vertex set of φ(t, ε).

In Section 5 of [8] we provided a collection of maps fn : LTn × LTn−1 → R with the
exact properties stated for gn above, where every instance of Qk is replaced by LTk and
(i) is replaced by

(i) fn(t, t′) = 0 if t′ cannot be obtained from t by erasing a leaf.

In particular, we showed that such properties hold for the collection of maps con-
structed recursively as follows:

• if (t, t′) ∈ LTn × LTn−1 do not differ by erasing a leaf, fn(t, t′) = 0;

• if (t, t′) ∈ LT1 × LT0, set f1(t, t′) = 1;

• if (t, t′) ∈ LTn × LTn−1, where n > 1, differ by erasing a leaf, consider the subtrees
L(t), L(t′) containing the leftmost child of the root vertex and its descendants in
t, t′ respectively; if |L(t)| = i and |L(t′)| = i− 1 for some i > 0, set

fn(t, t′) =
i(i+ 1)(3n− 2i− 1)

(n− 1)n(n+ 1)
fi(L(t), L(t′));

otherwise set R(t), R(t′) to be the trees obtained by erasing L(t), L(t′) from t, t′

(as well as the edge joining the root vertex to its leftmost child); we then have
|R(t)| = |R(t′)|+ 1 = i for some i > 0 and we set

fn(t, t′) =
i(i+ 1)(3n− 2i− 1)

(n− 1)n(n+ 1)
fi(R(t), R(t′)).

The main reason why the collection of mappings fn can be used to construct mappings
gn which satisfy the properties we require is the following:

Lemma 5.2. If (t, t′) ∈ LTn × LTn−1, ε = ±1 and fn(t, t′) > 0, then F (φ(t′, ε)) is obtained
from F (φ(t, ε)) by collapsing a face, where F :

⋃
i≥0 Q

•
i →

⋃
i≥0 Qi is the mapping which

forgets the distinguished vertex.

Proof. The proof does of course rely on the specific definition of φ (and is the only part of
this paper that does). The quadrangulation φ(t, ε) can be drawn using the vertex set of t
and an added vertex δ as follows: consider a counterclockwise (cyclic) contour c1, . . . , c2n
of the one face of t; for each i, draw a quadrangulation edge joining ci to its “target”
corner, which we will take to be the next corner in the contour whose vertex has strictly
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Figure 11: Erasing a leaf (i.e. a degree 1 vertex v and the edge (v, p(v)) joining it to its
parent) from a labelled tree t ∈ LTn, whatever the labels, corresponds to collapsing the
face built around the edge (v, p(v)) in the pointed quadrangulation Φ(t, ε).

smaller label than the vertex of ci, or the corner around δ if the label of the vertex that ci
belongs to is minimal.

Suppose t′ is obtained from t by erasing a leaf v and the edge (v, p(v)). If l(v) = l(p(v))

or l(v) = l(p(v)) + 1, then the the two quadrangulation edges issued from the corner of t
right before the one around v and the one right after v have the same “target” corner
and enclose a degenerate face of the quadrangulation φ(t, ε) (see Figure 11). Erasing
v collapses those two edges into a single edge; targets for corners other than the one
around v (which is eliminated) are unaffected. Furthermore, there is no issue with the
rooting: φ(t, ε) is rooted in the edge issued by the root corner of t, with an orientation
given by ε: such an edge does correspond to the edge issued from the root corner of t′.

If l(v) < l(p(v)), then the matter slightly more complicated. The contour of t′ has two
fewer corners than the contour of t: the quadrangulation edges e1 and e2 issued from
the corner before v and the corner around v are eliminated. Let c be the target corner of
the corner immediately after v, which must be around a vertex labelled l(v). Suppose
c is not the corner of v; then all corners having the corner of v as a target in t have c
as a target in t′: equivalently, all edges adjacent to v in φ(t, ε) become adjacent to the
vertex of c in φ(t′, ε). Eliminating edges e1, e2 and rerouting all edges adjacent to v to
the vertex of c exactly amounts to collapsing the quadrangulation face which encloses
the tree edge (v, p(v)). If c̃ is the quadrangulation corner in φ(t, ε) corresponding to the
edge e1, oriented towards v, the quadrangulation F (φ(t′, ε)) is coll(F (φ(t, ε)), c̃) (again,
the rooting is correctly preserved).

If c is the corner around v, then l(v) is minimal and v is the unique vertex carrying
label l(v); in that case, the face enclosing the edge (v, p(v)) is again degenerate and
contains the vertex δ, which is the furthest one from the origin in the quadrangulation
φ(t, ε). In this case, the quadrangulation φ(t′, ε) can be obtained from t and φ(t, ε) by
simply eliminating the original pointed vertex δ from φ(t, ε), erasing the tree edge
(v, p(v)) and renaming vertex v to δ: that way, all one needs to do is erase the two
quadrangulation edges that were drawn from the corner of v and from the corner after
v, which amounts to collapsing the degenerate face that corresponded to the tree edge
(v, p(v)). The quadrangulation φ(t′, ε) also has its pointing “moved” (which is natural,
since φ(t, ε) was pointed in a vertex within the face to be collapsed), but this has no
bearing on F (φ(t, ε)).

Lemma 5.3. The collection of mappings gn : Qn × Qn−1 → R defined as

gn(q, q′) =
1

n+ 2

∑
v∈V (q)

∑
v′∈V (q′)

1εq,v=εq′,v′ fn(tq,v, tq′,v′),

where fn : LTn × LTn−1 → R≥0 is defined recursively as described before and where
φ(tq,v, εq,v) = (q, v) and φ(tq′,v′ , εq′,v′) = (q′, v′), satisfies properties (i), (ii) and (iii).

EJP 25 (2020), paper 118.
Page 16/30

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP519
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A polynomial upper bound for the mixing time of edge rotations on planar maps

Proof. This is straightforward from the properties of fn.
Indeed, property (i) for gn is a consequence of Lemma 5.2: if there are v, v′ in V (q)

and V (q′) respectively such that φ−1(q, v) = (t, ε) and φ−1(q′, v′) = (t′, ε), where t ∈ LTn
and t′ ∈ LTn−1 are such that fn(t, t′) 6= 0, then, since t and t′ differ by erasing a leaf, the
quadrangulations q = F (φ(t, ε)) and q′ = F (φ(t′, ε)) differ by collapsing a face.

As for property (ii), we have∑
q′∈Qn−1

gn(q, q′) =
1

n+ 2

∑
v∈V (q)

∑
(q′,v′)∈Q•n−1

1εq,v=εq′,v′ fn(tq,v, tq′,v′) =

=
1

n+ 2

∑
v∈V (q)

∑
(t′,ε)∈LTn−1×{1,−1}

1εq,v=εfn(tq,v, t
′) =

1

n+ 2

∑
v∈V (q)

∑
t′∈LTn−1

fn(tq,v, t
′) =

=
1

n+ 2

∑
v∈V (q)

1 = 1.

Similarly, for (iii) one has∑
q∈Qn

gn(q, q′) =
1

n+ 2

∑
v′∈V (q′)

∑
t∈LTn

fn(t, tq′,v′) =
|LTn|(n+ 1)

|LTn−1|(n+ 2)
=
|Qn|
|Qn−1|

.

6 Canonical paths

Given two quadrangulations q, q′ ∈ Qn, we intend to build a random canonical path
from q to q′, that is a probability measure Pq→q′ on the set Γq→q′ of all sequences
(qi, ei, si)

N
i=1 such that

• for all i = 1, . . . , N , we have qi ∈ Qn and ei ∈ E(qi) \ {ρ}, where ρ is the root edge
of qi, while si = ±;

• qi+1 = qei,sii for i = 1, . . . , N − 1;

• q1 = q and qeN ,sNN = q′.

Note that our aim is to construct these paths in such a way that, given an edge
flip (q, e, s), the quantity

∑
q,q′∈Qn

Pq→q′{γ ∈ Γq→q′ | (q, e, s) appears in γ} is as small as
possible.

The main idea of the construction is to have a canonical way of splitting intermediate
quadrangulations in the path into two parts: ideally, we want what we shall call the right
part, which shrinks with time, to retain as much memory of the initial quadrangulation
q as possible, while the left part is a growing, increasingly accurate version of q′ (see
Figure 12 for the decomposition).

Because, however, our canonical split requires an external face to act as a “separator”
between the left and right parts, it is not possible – or at least it is not convenient
– to grow the complete quadrangulation q′ on the left, since we we have space for a
quadrangulation of size at most n− 1. That is why we select a mapping F : Q2

n → Qn−1

(with certain properties) and construct the random path from q to q′ as

• a random path from q to a quadrangulation whose left part is F (q, q′) and whose
right part is empty, distributed according to a probability which will later be called

P
F (q,q′)
q ;

• a random path from the final quadrangulation of the path above to q′, whose reverse

path is distributed according to the probability PF (q,q′)
q′ .

Our objective will be to describe a random flip path distributed according to the

probability measure PF (q,q′)
q ; this will consist of n concatenated flip subpaths, of which
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• the first is special: it collapses one appropriately chosen random face of q and
establishes a “separating face” to the right of the root edge; at the end of this flip
sequence, the face directly to the right of the root edge separates an empty left
quadrangulation L0 from a right quadrangulation R0 of size n− 1;

• the (i+ 1)th flip subpath (for i = 1, . . . , n− 1) turns a quadrangulation with left part
Li−1 and right part Ri−1 into a quadrangulation with right part Ri = coll(Ri−1, c)

for some c, and left part Li, where Li has an additional face with respect to Li−1 (in
the strong sense that Li−1 = coll(Li, c

′) for some corner c′ of Li). Given (Li−1, Ri−1),
the quadrangulations Li, Ri are random, distributed in a way that is based on the
growth algorithm from Section 5. The sequence of flips constituting this subpath
will be later denoted by P ((Li−1, Ri−1), (Li, Ri)), and itself consists of three distinct
phases:

– right phase: the face of Ri−1 containing c is replaced, via a local sequence of
flips, by a degenerate face, which is then moved within Ri−1 until it becomes
adjacent to the “separating face”;

– central phase: this is a very short sequence of just 4 edge flips which move
the extra degenerate face from one side of the “separating face” to the other,
making it now part of the left portion of the quadrangulation;

– left phase: the extra degenerate face is moved to the appropriate location in
Li−1 and then possibly replaced by a non-degenerate face via local flips in
order to create the left quadrangulation Li.

In conclusion, the full canonical path from q to q′ will consist of

• a flip sequence modifying q to have a separating face, with a quadrangulation R0

of size n− 1 on the right and an “empty quadrangulation” L0 on the left;

• for each i = 1, . . . , n− 1, a right phase, central phase and left phase, after which a
face has moved from Ri−1 into Li−1, thus yielding left and right parts Li, Ri, where
|Ri| = n− i− 1 = n− 1− |Li|, on either side of a separating face. At the end of this
whole process Rn−1 is empty and Ln−1 is F (q, q′);

• n − 1 sequences, each with a reverse left phase, reverse central phase, reverse
right phase, which move a face from the left part of the quadrangulation to the
right part, ending with a left part of size 0 and a right part of size n− 1;

• a final sequence which “dismantles” the separating face and moves it to the
appropriate location to yield q′.

The next subsection will formalise the idea of a “separating face” and give the
description of our canonical left-right decomposition, as well as the law of the sequence
(Li, Ri)

n−1
i=0 ∈

∏n−1
i=0 Qi × Qn−1−i as a function of the pair (q, q̃) ∈ Qn × Qn−1.

Section 6.2 describes the flip paths used to “collapse” a face by turning it into a
degenerate face and those that move a degenerate face from one location to another
within a quadrangulation. Section 6.3 finally explains how to build subpaths of the form
P ((Li−1, Ri−1), (Li, Ri)) (which will turn out to be deterministic given Li−1, Li, Ri−1, Ri)
by assembling flip sequences from Section 6.2 into a right phase, central phase and left
phase, and establishes our desired estimates.

6.1 Basic structure of canonical paths

In order to describe the general structure of our canonical paths, it will be useful
to introduce certain “surgical operations” that will enable us to assemble multiple
quadrangulations into a single larger one. Given two quadrangulations L ∈ Ql and
R ∈ Qr, where l, r ≥ 1, we shall write L ·R for the quadrangulation in Ql+r+1 obtained as
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L R L ·R

Figure 12: From two quadrangulations L ∈ Q3 and R ∈ Q8 to a quadrangulation
L ·R ∈ Q12 (whose root is the red one on the right, while the marked blue oriented edge
is forgotten). Notice that it is possible to recover L and R from L · R, by splitting the
two cycles which form the boundary of the face containing the root corner, erasing the
dashed edges and rooting appropriately.

follows (Figure 12): first “double” the root edges of L and R by attaching a degree two
face directly to their right; for convenience, draw this degree two face as the infinite face
in the plane, so that L and R are each “enclosed” within a cycle of length 2 containing
the root edge; now draw both quadrangulations in the plane, identifying their origins, in
such a way that both root edges are oriented clockwise (with respect to the infinite face);
finally, forget the rooting of L to obtain L ·R. It will be convenient to also consider the
case where l = 0 or r = 0 (remember we have conventionally set Q0 = {→}); we will set
→· q, for any q with |q| ≥ 1, to be the quadrangulation obtained by adding a degenerate
face directly to the right of the root edge of q (equivalently, the operation described
above is performed without actually doubling the root edge of→). The quadrangulation
q ·→ is→· q, rerooted in the edge within the added degenerate face, so as not to change
the origin.

We shall write Ql · Qr for the subset {L ·R | (L,R) ∈ Ql × Qr} of Ql+r+1. Notice that,
given q ∈ Ql ·Qr such that q = L ·R, one can quite simply reconstruct L and R, since the
rooting of L, which is the only information not trivially encoded, can still be recovered
by following the contour of the face containing the root corner of q.

As previously described, the idea behind our canonical paths will be to “destroy” the
starting quadrangulation q on the right while “growing” a new quadrangulation on the
left.

Before dealing with the general case, we shall focus on the case where the “final”
quadrangulation q′ is of the form q̃ ·→ for some q̃ ∈ Qn−1. Furthermore, we shall not
yet build the full random canonical path from q to q̃ · →, but a random sequence of
quadrangulations of the form (Li ·Ri)n−1

i=0 , taking values in
∏n−1
i=0 (Qi × Qn−i−1), that our

random canonical path will “go through”. Given this sequence, the path will actually be
deterministic, as detailed within Sections 6.2 and 6.3.

Given q ∈ Qn and (q′· →) ∈ Qn, consider the probability distribution Pq
′

q on the set∏n−1
i=0 Qi · Qn−i−1 defined as follows. Given (Li ·Ri)n−1

i=0 ∈
∏n−1
i=0 Qi · Qn−i−1, set

Pq
′

q ((Li ·Ri)n−1
i=0 ) = gn(q,R0)1Ln−1=q′

n−2∏
i=0

gn−i−1(Ri, Ri+1)gi+1(Li+1, Li).

It should be clear that Pq
′

q is a probability distribution: a random sequence (λi · ρi)n−1
i=0

distributed according to Pq
′

q is simply built in such a way that λn−1, λn−2, . . . , λ0 and
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q, ρ0, . . . , ρn−1 are independent sequences of random quadrangulations, started at q′

and q respectively, built so as to collapse one random face according to the probability
distribution given by gi(−, ·) at each step.

The key feature of the probability distribution Pq
′

q which we will use to complete the
necessary estimates on the congestion given by our random canonical paths is expressed
in the following lemma:

Lemma 6.1. Given positive integers n, a < n− 1, b < n and quadrangulations l ∈ Qa, r ∈
Qb, we have ∑

q∈Qn,q′∈Qn−1

Pq
′

q

(
{(Li, Ri)n−1

i=0 | La = l, Rn−b−1 = r}
)
≤ 122n−b−a−1.

Proof. The expression in the statement can be rewritten as
∑
q∈Qn

∑
(Ri)

n−b−2
i=0 ∈

∏n−b−2
i=0 Qn−i−1

Rn−b−1=r

(Ri)
n−1
i=n−b∈

∏n−1
i=n−b Qn−i−1

gn(q,R0)

n−2∏
i=0

gn−i−1(Ri, Ri+1)

×


∑
q′∈Qn−1

∑
(Li)

a−1
i=0 ∈

∏a−1
i=0 Qi

La=l
(Li)

n−1
i=a+1∈

∏n−1
i=a+1 Qi

1Ln−1=q′

n−2∏
i=0

gi+1(Li+1, Li)

 .

Let us give an upper bound for the second factor above: the computations involved in
bounding the first factor will be entirely similar.

By appropriately exchanging sums and products, we can rewrite it as

∑
Li∈Qi

i=a+1,...,n−1

ga+1(La+1, l)

n−2∏
i=a+1

gi+1(Li+1, Li)
∑
Li∈Qi

i=0,...,a−1

ga(l, La−1)

a−2∏
i=0

gi+1(Li+1, Li);

the entire internal sum is equal to 1 by property (ii) of the mappings g1, . . . , ga; the
external sum can thus be evaluated by using property (iii) of the mappings ga+1, . . . , gn−1

(and by summing over Ln−1, Ln−2, . . . , La+1 separately, in turn). We obtain that the above
is

n−2∏
i=a

|Qi+1|
|Qi|

≤ 12n−a−1,

where we have used the simple fact that, for all i ≥ 0, |Qi+1| = 3i+1 Cat(i + 1) ≤
3 · 4 · 3i Cat(i) = 12|Qi|.

As for the first factor above, a similar argument yields that it is equal to
∏n−1
i=b

|Qi+1|
|Qi| ,

and therefore bounded above by 12n−b, which concludes the proof of the lemma.

Consider now the general case of a pair of quadrangulations q1, q2 ∈ Qn: we are
almost ready to construct our probability measure Pq1→q2 on the set of all possible paths
Γq1→q2 . This will require three fundamental ingredients: one is the family of probability
spaces (Γq

′

q ,P
q′

q ) (for q ∈ Qn, q
′ ∈ Qn−1) we just built and discussed; one is a mapping

F : Q2
n → Qn−1, which we will use to assign to the pair q1, q2 the probability space(

Γ
F (q1,q2)
q1 × Γ

F (q1,q2)
q2 ,P

F (q1,q2)
q1 ⊗ PF (q1,q2)

q2

)
; the last one is a mapping Ψq1,q2 : Γ

F (q1,q2)
q1 ×
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Γ
F (q1,q2)
q2 → Γq1→q2 , which will enable us to simply define Pq1→q2 as the push-forward via

Ψq1,q2 of the probability measure PF (q1,q2)
q1 ⊗ PF (q1,q2)

q2 .
For the mapping F , we may choose any which satisfies the condition that, given q ∈ Qn

and q′ ∈ Qn−1, we have both |{q̃ ∈ Qn | F (q, q̃) = q′}| ≤ 12 and |{q̃ ∈ Qn | F (q̃, q) = q′}| ≤
12. The fact that such a mapping exists is an immediate consequence of the fact that
|Qn| ≤ 12|Qn−1|: we shall from here on use F : Q2

n → Qn−1 under the assumption that
we have chosen one such mapping.

The next section will be devoted to the construction of a mapping Ψq1,q2 : Γ
F (q1,q2)
q1 ×

Γ
F (q1,q2)
q2 → Γq1→q2 , which will consist in essentially “interpolating” sequences (L1

i ·
R1
i )
n−1
i=0 ∈ Γ

F (q1,q2)
q1 and (L2

i ·R2
i )
n−1
i=0 ∈ Γ

F (q1,q2)
q2 by filling in the “gap” between successive

quadrangulations via sequences of edge flips and making sure to run the complete
flip sequence constructed from (L1

i · R1
i )
n−1
i=0 forward, then the one constructed from

(L2
i ·R2

i )
n−1
i=0 ∈ Γ

F (q1,q2)
q2 backwards. This needs to be done with some care: in particular,

our aim is to be able to give an upper bound for the quantity∑
q1,q2∈Qn

Pq1→q2({γ ∈ Γq1→q2 containing (q, e, s)})

independent of the flip (q, e, s) by invoking Lemma 6.1. Indeed, we wish to build Ψq1,q2 in
such a way that knowing a flip (q, e, s) appears in a path Ψq1,q2((L1

i ·R1
i )
n−1
i=0 , (L

2
i ·R2

i )
n−1
i=0 )

gives as much information as possible about the actual quadrangulations Lji , R
j
i .

6.2 The flip path from q to → · coll(q, c)

We now begin the task of constructing our mappings Ψq1,q2 , for q1, q2 ∈ Qn. In order
to do this, given (Li · Ri)n−1

i=0 ∈ Γq
′

q we wish to construct flip sequences leading from
the quadrangulation Li · Ri to the quadrangulation Li+1 · Ri+1, plus a flip path from q

to L0 · R0. Notice that with probability 1 (according to Pq
′

q ) the quadrangulation Ri+1

differs from Ri by collapsing a face; the same is true for Li and Li+1 and for R0 and q.
We may therefore assume this is the case when constructing Ψq1,q2 .

First of all, we shall construct the very first part of the flip path, which will transform
a quadrangulation q into L0 · R0, where |L0| = 0 (hence L0 =→) and R0 is of the form
coll(q, c) for some corner c of q. Once this construction is made, all others will be rather
straightforward generalisations of it.

Hence our objective is this: given a quadrangulation q ∈ Qn and a corner c of q,
we shall build a unique canonical path that, through a sequence of edge flips, trans-
forms q into the quadrangulation→ · coll(q, c) (see Figure 13 for a representation of a
quadrangulation of the form→ · coll(q, c)).

We shall say that such a path has two phases: the first phase has the aim of replacing
the face fc containing c with a degenerate face in such a way that the appropriate
vertices of q are identified; the second phase consists in “moving” the degenerate face so
that it ends up lying directly to the right of the root edge. We shall first concern ourselves
with the second phase, that is, build a canonical path P (q, c) from q to→ · coll(q, c) in the
case where c is a corner within a degenerate face; note that the specific case where the
internal edge of this face is the root edge of q is a little different and will be dealt with
separately.

Lemma 6.2. Let c be a corner within a degenerate face f of a quadrangulation q ∈ Qn
and suppose the root edge of q is not the internal edge of f . Define the path P (q, c) =

(qi, ei,+)Ni=1 recursively as follows (it may be useful to refer to Figure 14):

• set q1 = q.
• Let f1 = f and η1 be the internal edge of f ; let fi, for i ≥ 2, be the face of qi that

contains the (possibly flipped) image of edge ηi−1 in qi, and ηi the internal edge
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Figure 13: On the left, a quadrangulation q ∈ Qn, drawn in the plane so that the
infinite face lies directly to the right of the root edge, with a marked corner c within a
face f . To the right, the quadrangulation → · coll(q, c): the face f is “collapsed” and a
degenerate face is added directly to the right of the root edge. If ρ is the root corner of
the quadrangulation q′ drawn on the right, coll(q′, ρ) is coll(q, c).

of fi (which will automatically be a degenerate face). Let vi be the vertex on the
boundary of fi that is an endpoint of ηi, let wi be the other vertex on the external
boundary of fi and let η̃i be the edge immediately after ηi in counterclockwise
order around vertex vi.

• If dgr(vi, ∅) > dgr(wi, ∅) (where dgr is the graph distance on the vertex set of qi), set
ei = ηi. If, on the other hand, dgr(vi, ∅) < dgr(wi, ∅), set ei = η̃i.

• Set qi+1 = qei,+i .

• Set N to be the first non-negative integer for which qeN ,sNN is the quadrangulation
→ · coll(q, c).

The path above is well defined, in the sense that fi is always degenerate (so that the
construction can be performed), ei is never the root edge of f and N is a positive integer.

Furthermore, we have |P (q, c)| = N ≤ 6n and, for i = 1, . . . , N , we have coll(qi, ci) =

coll(q, c), where ci is the corner corresponding to the edge ei, oriented towards vi.

Proof. The fact that fi is degenerate is easily shown by induction. Indeed, flipping ηi
does not change the fact that it is an internal edge in a degenerate face. On the other
hand, suppose dgr(vi, ∅) < dgr(wi, ∅) and let ui be the endpoint of ηi that is different from
vi. Then flipping η̃i clockwise does not increase the degree of ui, so that ηi remains
within a degenerate face in qi+1.

Now, since η1 is not the root edge of q, the edge ηi (which is the image of η1 after
multiple flips in the path) cannot at any point be the root edge. On the other hand, if
the root edge were η̃i and we had dgr(vi, ∅) < dgr(wi, ∅), hence vi = ∅, we would actually
have qi =→ · coll(q, c).

The fact that N is finite can be seen as a consequence of the fact that dgr(vi, ∅) is
weakly decreasing (since it is not increased by the flip of η̃i and is decreased when
flipping ηi). After we have vi = ∅, flipping η̃i repeatedly will eventually make fi the
face immediately to the right of the root edge, yielding exactly the quadrangulation
→ · coll(q, c).

Let us now check the bound on N . Consider a step (qi, ei,+) in the path, where ei 6= ηi
and ei−1 6= ηi−1; the edge ei, which is then η̃i, has never been flipped before (i.e. it is not
the image in qi of any ej for j < i). On the other hand, {i ≤ N | ei = ηi} ≤ dqgr(v0, ∅) ≤ 2n,
hence the bound.

Finally, ci is a corner of the degenerate face fi (since fi contains ηi and lies directly
to the right to the right of η̃i), and we can show that coll(qi, ci) = coll(qi+1, ci+1). This is
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Figure 14: The two types of edge flips we concatenate in order to move a degenerate
face (not containing the root edge as a double edge) from its location to a target location
immediately to the right of the root edge. On the left, the case where the double edge is
attached to the boundary vertex further from the origin, and therefore gets flipped. To
the right, the case where the double edge is already attached to the boundary vertex
nearest to the origin: the degenerate face gets “rotated” counterclockwise by flipping
one of its boundary edges. Flips of the second type can be repeated until the first case
presents itself again, this time nearer the origin.

obvious if ei = ηi; if ei = η̃i, the quadrangulation qi+1 differs by qi only by the fact that the
degenerate face fi is “rotated” onto the edge after η̃i in counterclockwise order around
wi, then labelled fi+1: collapsing it after the procedure will still yield coll(qi, ci).

We shall then perform an ad hoc construction in the case where the root edge is the
internal edge within the degenerate face of q containing c:

Lemma 6.3. Let q ∈ Qn be a quadrangulation whose root edge ρ is the internal edge
within a degenerate face f and let c be a corner within f . Let u be the degree 1 endpoint
of ρ, let v be its other endpoint and let w be the third vertex adjacent to f .

If u is the origin of q, let e1, . . . , edeg(w) be the edges incident to w, in counterclockwise
order, indexed in such a way that e1 and edeg(w) are the boundary edges of q. Set

P (q, c) = (qi, ei,+)Ni=1, where q1 = q and qi+1 = qei,+i for i = 1, . . . ,deg(w) − 1 = N

(Figure 15, above).
If u is not the origin of q (hence v is), let e1, . . . , edeg(w) be the edges incident to w, in

clockwise order, indexed in such a way that e1 and edeg(w) are the boundary edges of

q. Set P (q, c) = (qi, ei,−)Ni=1, where q1 = q and qi+1 = qei,−i for i = 1, . . . ,deg(w)− 2 = N

(Figure 15, below).
We then have qeN ,sNN =→ · coll(q, c), where sN = + in the first case and sN = − in the

second. Notice that in any case we have N < 2n.
In the first case, let ci be the corner corresponding to edge ei in qi, oriented away

from w; in the second, let ci be the corner corresponding to ei in qi, oriented towards w.
In both cases, we have coll(qi, ci) = coll(q, c).

Proof. Notice that the root edge ρ does not have w as an endpoint, hence all flips we
perform are allowed, and that N ≤ deg(w) < 2n.

Also remark that the quadrangulation → · coll(q, v) can be obtained from q by “de-
taching” the edges e2, . . . , edeg(w)−1 from w and rerouting them to u, replacing e1 with
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Figure 15: Sequences of flips meant to replace a degenerate face containing the root
edge of a quadrangulation as a double edge with a degenerate face lying immediately to
the right of the root edge. Above, the case where the root edge is oriented away from its
endpoint u of degree 1: a sequence of clockwise flips happening in counterclockwise
order; below, the case where the root edge is oriented towards its degree-1 endpoint: a
sequence of counterclockwise flips happening in clockwise order.

an edge joining u to v in such a way as to create a face containing w (which has now
degree 1) directly on the right of the root edge, and finally replacing edegw with an edge
between w and u in the case where u is the origin of q.

But indeed, this is exactly the effect achieved by the sequence of flips given: when
flipping ei we are erasing it in favour of an edge that is a version of ei+1 rerouted towards
u rather than w. The flip of edeg(w)−1 creates an edge between u and v enclosing w within
a degenerate face, and flipping edeg(w) in the case where u is the origin ensures that the
degree 1 vertex w is a neighbour of the origin (see Figure 15).

Indeed, one can identify u and w in qi by collapsing the face lying directly to the right
of the root and obtain the quadrangulation coll(q, c); the corner ci is defined in such a
way that this is exactly the effect of taking coll(q, ci).

We will now construct a path of flips from q to→ · coll(q, c) in the case where c is a
corner within a non-degenerate face.

Lemma 6.4. Let c be a corner within a non-degenerate face f of a quadrangulation
q ∈ Qn; if f has four distinct vertices then let c1 = c, c2, c3, c4 be a clockwise contour of f ,
and let v1, v2, v3, v4 be the corresponding vertices. If f has three distinct vertices, then
let c1, c2, c3, c4 be a clockwise contour of f such that c1 and c3 are adjacent to the same
vertex v1 (regardless of the corner c), and let v2, v4 be the vertices of c2, c4. If the root
edge of q has v2 as an endpoint, let w = v4; otherwise, let w = v2.

Let e1, e2, . . . , edeg(w) be the edges adjacent to w, in clockwise order, indexed in such a

way that e1 and edeg(w) are on the boundary of f . Set P1(q, c) = (qi, ei,−)
deg(w)−1
i=1 , where

q1 = q and qi+1 = qei,−i for i = 1, . . . ,deg(w). Now set P2(q, c) = P (qdeg(w), c
′), where c′ is

any corner of the face containing the edge edeg(w) in qdeg(w) (which is a degenerate face).
Set P (q, c) to be the concatenation of P1(q, c) and P2(q, c). Then P (q, c) = (qi, ei, si)

N
i=1 is

well defined and we have qeN ,sNN =→ · coll(q, c).

Moreover, we have N < 8n and, setting c′i to be the corner corresponding to the edge
ei in qi, oriented towards w for i = 1, . . . ,degw, and oriented towards the vertex vi from
the construction of Lemma 6.2 for N ≥ i > degw, we have coll(qi, c

′
i) = coll(q, c).
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Figure 16: The quadrangulations q1, q2, . . . , qdegw in the path P (q, c), where c is a corner
not belonging to a degenerate face.

Proof. First of all, notice that the root edge does not appear in {e1, e2, . . . , edegw} so that
all of the first degw − 1 flips are “allowed”: if it did, given our choice of w then the root
edge would have both v2 and v4 as endpoints; but this would create a cycle of length 3 in
the quadrangulation q, which is bipartite.

We can show inductively that coll(qi, c
′
i) = coll(q, c) for i = 2, . . . ,degw − 1.

Let e1, edegw
, η, η′ be the edges forming the boundary of f in q, named in clockwise

order. The quadrangulation coll(q, c) is obtained by identifying e1 with η′ and edegw with η,
thus collapsing f . Note that the sentence above is valid in all cases under consideration,
even if f has only 3 vertices (in which case f , not being degenerate, still has four
distinct edges, and collapsing f may only be done by identifying them as prescribed),
and whether w is the vertex initially labelled v2 or v4, as neither is the vertex of corner c
when f has four vertices. Equivalently, coll(q, c) is obtained by first erasing either e1 or
η′ and then identifying edegw with η.

Consider now the quadrangulation q2 = qe1,−; the clockwise boundary of the face
lying to the left of the flipped oriented edge e1 is formed by e2, edegw, η,−e1 (which are
all distinct if degw > 2), with e1 and e2 being adjacent to c′2. We thus have that coll(q2, c

′
2)

can be obtained by first erasing e1, then identifying edegw with η. But, since the map
obtained from q by erasing e1 and the map obtained from q2 by erasing the flipped e1 are
exactly the same (with all labels assigned to objects in the same way), it follows that
coll(q2, c

′
2) = coll(q, c).

The argument can be repeated to show that, for i ≤ degw, coll(qi, c
′
i) = coll(qi−1, c

′
i−1)

(because the two are obtained in the same way from the coinciding maps created by
erasing ei−1 from qi−1 and qi).

Consider now the quadrangulation qdegw; in it, the degree of w is 1, and therefore ew is
the internal edge of a degenerate face f ′ (and is not the root edge). Moreover, collapsing
f ′ yields coll(q, c). We can thus invoke Lemma 6.2, which tells us that P (qdegw, c

′), where
c′ is a corner of f ′, is a flip path of length at most 6n ending with→ · coll(qdegw, c

′) =→
· coll(q, c), and that coll(qi, c

′
i) = coll(qdegw, c

′) = coll(q, c) for i > degw.

The estimate for |P (q, c)| follows from the fact that degw < 2n = |E(q)|.

Via the three lemmas above, for all pairs (q, c), where q ∈ Qn and c is a corner of q, we
have constructed a canonical path P (q, c) = (qi, ei, si)

N
i=1 such that qeN ,sNN =→ · coll(q, c).

The crucial property of these canonical paths is highlighted by the corollary below:

Corollary 6.5. Consider any triple (q, e, s), where q ∈ Qn, e is an edge of q other than
the root edge and s = ±. Suppose (q, e, s) appears in the sequence P (q′, c′) for some
q′ ∈ Qn and some corner c′ of q′. Let c1, c2 be the corners of q that correspond to the two
possible orientations of e; we have coll(q′, c′) ∈ {coll(q, c1), coll(q, c2)}.
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6.3 Completing the description of Ψq1,q2

Given (Li ·Ri)n−1
i=0 ∈ Γq

′

q , we now wish to build a flip path turning the quadrangulation
Li ·Ri into Li+1 ·Ri+1. That is, given L ∈ Qa and R ∈ Qn−a−1 and two corners c and c′ of
L and R respectively, we wish to build a flip path from coll(L, c) ·R to L · coll(R, c′).

This we shall do by simply combining multiple constructions from the previous section.
Indeed, consider P (L, c) = (qLi , e

L
i , s

L
i )NL
i=1 and P (R, c′) = (qRi , e

R
i , s

R
i )NR
i=1 as constructed

previously. Though the edge eR1 is an edge of R, it can be uniquely identified with an
edge of coll(L, c) · R; inductively, though eRi is an edge of qRi , we can see it as an edge

of coll(L, c) · qRi = coll(L, c) · (qRi−1)e
R
i−1,s

R
i−1 . We may therefore consider the sequence

of flips (coll(L, c) · qRi , eRi , sRi )NR
i=1, which is such that (coll(L, c) · qRNR

)e
R
NR

,sRNR is equal to
coll(L, c) · (→ · coll(R, c′)).

Now consider the face f lying directly to the right of the root in coll(L, c) · (→
· coll(R, c′)), let η be the edge immediately after the root edge in the clockwise contour
of f and let η′ be the internal edge of the degenerate face adjacent to η within the
“right” quadrangulation→ · coll(R, c′). By alternatively flipping η and η′, one can have
the degenerate face containing η′ “slide” along the boundary of f . Consider in particular
the sequence of four flips

(coll(L, c) · (→ · coll(R, c′)), η,+)

((coll(L, c) · (→ · coll(R, c′)))η,+, η′,+)

(((coll(L, c) · (→ · coll(R, c′)))η,+)η
′,+, η,+)

((((coll(L, c) · (→ · coll(R, c′)))η,+)η
′,+)η,+, η′,+)

as depicted in Figure 17. After the first flip, the degenerate face containing η′ lies imme-
diately to the left of the root edge in the “left quadrangulation” obtained as described in
Section 6.1 and shown in Figure 12; the next three flips make it so that the degenerate
face lies immediately to the right of the root edge of the “left quadrangulation”, with η′

adjacent to the origin. The result of the four flips is therefore (→ · coll(L, c)) · coll(R, c′).
We can thus define the whole path from coll(L, c) ·R to L · coll(R, c′), which we shall

denote by P (coll(L, c) ·R,L · coll(R, c′)), by a concatenation of the following sequences
of flips, which we will refer to as the “right phase”, the “central phase” (consisting of 4

flips), the “left phase”:

• right phase:
(coll(L, c) · qRi , eRi , sRi )NR

i=1

• central phase:

(coll(L, c) · (→ · coll(R, c′)), η,+)

((coll(L, c) · (→ · coll(R, c′)))η,+, η′,+)

(((coll(L, c) · (→ · coll(R, c′)))η,+)η
′,+, η,+)

((((coll(L, c) · (→ · coll(R, c′)))η,+)η
′,+)η,+, η′,+)

• left phase:
((qLi · coll(R, c′), eLi , s

L
i )NL
i=1)rev,

where, given a flip path P = (qi, ei, si)
N
i=1 ∈ Γq1→q

eN ,sN
N

, we set P rev to be the flip path

(q
eN+1−i,sN+1−i

N−i , eN+1−i,−sN+1−i)
N
i=1

in ΓqeN ,sN
N →q1 .
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(coll(L, c) · qRi , eRi , sRi )NR
i=1  flip η clockwise 

ηηηηηηηηηηηηηηηηη

η′η′η′η′η′η′η′η′η′η′η′η′η′η′η′η′η′
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 flip η′ clockwise  flip η clockwise  flip η′ clockwise 

((qLi · coll(R, c′), eLi , sLi )NL
i=1)

rev

Figure 17: The path P (coll(L, c) ·R,L ·coll(R, c′)); notice how the four flips in the “central
phase” of the path turn the result of the “right phase”, which is coll(L, c) · (→ · coll(R, c′)),
into the quadrangulation (→ · coll(L, c)) · coll(R, c′), so that the “left phase” can begin and
turn the quadrangulation into the desired L · coll(R, c′). Note that the root edge of the
quadrangulation is always the one marked in red appearing in the lower right part of the
picture; the arrow marked in blue represents the root edge of the “left quadrangulation”
and is marked to help confirm the fact above.

We are now ready to fully describe the mapping Ψq1,q2 : given q1, q2 ∈ Qn, consider

any pair of sequences ((L1
i ·R1

i )
n−1
i=0 , (L

2
i ·R2

i )
n−1
i=0 ) ∈ Γ

F (q1,q2)
q1 × Γ

F (q1,q2)
q2 that has nonzero

probability according to PF (q1,q2)
q1 ⊗ PF (q1,q2)

q2 . Set Ψq1,q2((L1
i ·R1

i )
n−1
i=0 , (L

2
i ·R2

i )
n−1
i=0 ) to be

the successive concatenation of

• P (q1, c), where R1
0 = coll(q1, c);

• P ((L1
i , R

1
i ), (L

1
i+1, R

1
i+1)) for i = 0, . . . , n− 2;

• P ((L2
i−1, R

2
i−1), (L2

i , R
2
i ))

rev for i = n− 1, n− 2, . . . , 1;

• P (q2, c
′)rev, where R2

0 = coll(q2, c
′).

We also have all the setup necessary to show the following important estimate:

Proposition 6.6. Consider a quadrangulation q ∈ Qn, an edge e of q other than the root
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edge and an element s ∈ {+,−}. We have∑
q1,q2∈Qn

Pq1→q2({γ ∈ Γq1→q2 containing (q, e, s)}) ≤ 8 · 12n+2.

Proof. By our definition of Pq1→q2 , the expression we wish to estimate is∑
q1,q2∈Qn

PF (q1,q2)
q1 ⊗ PF (q1,q2)

q2 ({X ∈ ΓF (q1,q2)
q1 × ΓF (q1,q2)

q2 | Ψq1,q2(X) contains (q, e, s)}).

We will use as an upper bound the one we obtain by summing the terms corresponding
to the following three possibilities:

• the flip (q, e, s) appears in P (q1, c) or P (q2, c
′)rev, in which case R1

0 = coll(q1, c) ∈
{coll(q, x1), coll(q, x2)} or R2

0 = coll(q2, c
′) ∈ {coll(qe, y1), coll(qe, y2)}, where x1, x2

are the corners of q that correspond to the two possible orientations of e and y1, y2

are the corners of qe that correspond to the two possible orientations of the flipped
version of e, by Corollary 6.5. Now, by Lemma 6.1, we have∑

i=1,2

∑
q1,q2

PF (q1,q2)
q1 (R1

0 = coll(q, xi)) + PF (q1,q2)
q2 (R2

0 = coll(qe, yi)) =

=
∑
i=1,2

[
∑
q1,q′

|{q2 | F (q1, q2) = q′}| · Pq
′

q1(R1
0 = coll(q, xi), L

1
0 =→)+

∑
q2,q′

|{q1 | F (q1, q2) = q′}| · Pq
′

q2(R2
0 = coll(qe, yi), L

2
0 =→)] ≤

≤ 4 · 12 · 122n−(n−1)−1 = 4 · 12n+1.

• The flip (q, e, s) appears in P (L1
i ·R1

i , L
1
i+1 ·R1

i+1) for some i; we shall consider some
separate subcases:

– we have q = qL · qR ∈ Ql · Qr and e is the image of an edge other than the root
edge in E(qL) (so that qe,s also lies in Ql ·Qr, and in fact in Ql ·qR). Let c1, c2 be
the corners corresponding to the two possible orientations of e in qe. If (q, e, s)

is a flip in the “central phase” of the path, with e = η or e = η′ (see Figure 17),
then at least one of the corner c1, c2 lies in the degenerate face that is in the
process of being moved along the boundary of the “left” quadrangulation; as
a consequence, we have L1

i ∈ {coll(qeL, c1), coll(qeL, c2)}, hence i = l − 1 and
R1
i+1 = qR. If not, then the flip happens in the “left phase” of the path and

Corollary 6.5 implies that L1
i ∈ {coll(qeL, c1), coll(qeL, c2)}, hence i = l − 1 and

R1
i+1 = qR. Thus we have the term∑

i∈{1,2}

∑
q1,q2

PF (q1,q2)
q1 (L1

l−1 = coll(qeL, ci), R
1
l = qR) ≤

≤ 2 · 12 · 122n−(l−1)−(n−l−1)−1 = 2 · 12n+2.

– we have q = qL · qR ∈ Ql · Qr and e is the image of an edge other than the
root edge in E(qR). This case is analogous: this time Corollary 6.5 gives
L1
l = qL and R1

l+1 ∈ {coll(qR, c1), coll(qR, c2)}, where c1, c2 are the corners of q
corresponding to the two possible orientations of e. This yields another term
of the form ∑

i∈{1,2}

∑
q1,q2

PF (q1,q2)
q1 (L1

l = qL, R
1
l+1 = coll(qR, ci)) ≤

≤ 2 · 12 · 122n−l−(n−l−2)−1 = 2 · 12n+2.
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– we have q ∈ Ql ·Qr and qe,s ∈ Ql+1 ·Qr−1. This is the only case we are missing,
i.e. the one where e is the edge right after the root edge of q in the clockwise
contour of the face lying directly to the right of the root edge (it can be seen
that, by construction, all other flips in P (L1

i · R1
i , L

1
i+1 · R1

i+1) happen within
qL or within qR. In this case, if qe,s = q′L · q′R, we have L1

i = qL and R1
i+1 = q′R,

hence i = l; we get the term∑
q1,q2

PF (q1,q2)
q1 (L1

l = qL, R
1
l+1 = q′R) ≤ 12 · 122n−l−(n−l−2)−1 = 12n+2.

Globally, this yields a term that can be upper bounded by 2 · 12n+2.

• The flip (q, e, s) appears in P (L2
i ·R2

i , L
2
i+1 ·R2

i+1)rev for some i; clearly, this case is
entirely analogous to the previous one, and will yield another term upper bounded
by 2 · 12n+2.

Summing the three upper bounds above proves the lemma.

7 The final bound

All this being done, we can apply the technique of canonical paths of Diaconis and
Saloff-Coste [9] to bound the relaxation time of Fn.

Proof of Theorem 1.1. The fact that νn = µn is an obvious consequence of Proposi-
tion 4.1. The upper bound for νn can be proven in exactly the same way as the one in [8]:
because the only difference between the chains Fn and F̃n is the fact that the root edge
can no longer be flipped and that each flip is assigned a probability of 1

3(2n−1) rather

than 1
6n , the proof of Proposition 4.1 in [8] also applies to the spectral gap νn of F̃n.

As for the lower bound, we have

1

νn
≤ max

(q,e,s)

1

π(q)p(q, qe,s)

∑
q1,q2∈Qn

∑
γ∈Γq1→q2 :

(q,e,s)∈γ

|γ|Pq1→q2(γ)π(q1)π(q2),

where π is the uniform measure on Qn, (q, e, s) varies among all possible flips (q ∈ Qn,
e ∈ E(q), s = ±) and p(q, qe,s) is the transition probability according to F̃n.

Now, all instances of π(·) can be replaced by 1
|Qn| . Also, we have p(q, qe,s) ≥ 1

3(2n−1)

(hence 1
p(q,qe,s) ≤ 6n) for all q ∈ Qn, e ∈ E(q), s = ±. Moreover, the length of our

canonical paths as constructed is at most 32n2. This can be checked by going through
the final construction from Section 6.3: each path of non-zero weight in Γq1→q2 is built
as two sequences (one “straight” and one “reversed”) of

• one path of the form P (q, c);

• n− 1 paths of the form P ((L,R), (L′, R′)).

In turn, every path of the form P ((L,R), (L′, R′)) is built as a concatenation of

• one path of the form P (q, c);

• 4 single flips;

• one path of the form P (q, c), reversed.

By the three lemmas in Section 6.2, we know that the length of a path of the form P (q, c)

is at most 8n, which yields the global upper bound of 32n2.
Applying the bound given by Proposition 6.6 we then obtain

1

νn
≤ 6n · 32n2 · 8 · 12n+2

|Qn|
.
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Since |Qn|
12n ≥ C

n5/2 , we have

1

νn
≤ 6n · 32n2 · 8 · 122 · Cn5/2 ≤ C2n

11/2

for some appropriate constant C2, as desired.
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