Abstract
We introduce a natural extension of the exclusion process to hypergraphs and prove an upper bound for its mixing time. In particular we show the existence of a constant $C$ such that for any connected, regular hypergraph $G$ within some natural class, the $\varepsilon $-mixing time of the exclusion process on $G$ with any feasible number of particles can be upper-bounded by $CT_{\text{EX} (2,G)}\log (|V|/\varepsilon )$, where $|V|$ is the number of vertices in $G$ and $T_{\text{EX} (2,G)}$ is the 1/4-mixing time of the corresponding exclusion process with just two particles. Moreover we show this is optimal in the sense that there exist hypergraphs in the same class for which $T_{\mathrm{EX} (2,G)}$ and the mixing time of just one particle are not comparable. The proofs involve an adaptation of the chameleon process, a technical tool invented by Morris ([14]) and developed by Oliveira ([15]) for studying the exclusion process on a graph.
Citation
Stephen B. Connor. Richard J. Pymar. "Mixing times for exclusion processes on hypergraphs." Electron. J. Probab. 24 1 - 48, 2019. https://doi.org/10.1214/19-EJP332
Information