Open Access
2019 Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations
Volker Betz, Lorenzo Taggi
Electron. J. Probab. 24: 1-37 (2019). DOI: 10.1214/19-EJP328


We consider nearest neighbour spatial random permutations on $\mathbb Z ^{d}$. In this case, the energy of the system is proportional to the sum of all cycle lengths, and the system can be interpreted as an ensemble of edge-weighted, mutually self-avoiding loops. The constant of proportionality, $\alpha $, is the order parameter of the model. Our first result is that in a parameter regime of edge weights where it is known that a single self-avoiding loop is weakly space filling, long cycles of spatial random permutations are still exponentially unlikely. For our second result, we embed a self-avoiding walk into a background of spatial random permutations, and condition it to cover a macroscopic distance. For large values of $\alpha $ (where long cycles are very unlikely) we show that this walk collapses to a straight line in the scaling limit, and give bounds on the fluctuations that are almost sufficient for diffusive scaling. For proving our results, we develop the concepts of spatial strong Markov property and iterative sampling for spatial random permutations, which may be of independent interest. Among other things, we use them to show exponential decay of correlations for large values of $\alpha $ in great generality.


Download Citation

Volker Betz. Lorenzo Taggi. "Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations." Electron. J. Probab. 24 1 - 37, 2019.


Received: 15 June 2018; Accepted: 27 May 2019; Published: 2019
First available in Project Euclid: 3 July 2019

zbMATH: 07089012
MathSciNet: MR3978224
Digital Object Identifier: 10.1214/19-EJP328

Primary: 82B20 , 82B41 , 82B41

Keywords: random spatial permutations , Self-avoiding walk

Vol.24 • 2019
Back to Top