Open Access
2018 Supermartingale decomposition theorem under $G$-expectation
Hanwu Li, Shige Peng, Yongsheng Song
Electron. J. Probab. 23: 1-20 (2018). DOI: 10.1214/18-EJP173
Abstract

The objective of this paper is to establish the decomposition theorem for supermartingales under the $G$-framework. We first introduce a $g$-nonlinear expectation via a kind of $G$-BSDE and the associated supermartingales. We have shown that this kind of supermartingales has the decomposition similar to the classical case. The main ideas are to apply the property on uniform continuity of $S_G^\beta (0,T)$, the representation of the solution to $G$-BSDE and the approximation method via penalization.

References

1.

[1] Bensoussan, A.: On the theory of option pricing. Acta. Appl. Math. 2, (1984), 139–158. 0554.90019[1] Bensoussan, A.: On the theory of option pricing. Acta. Appl. Math. 2, (1984), 139–158. 0554.90019

2.

[2] Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L.: $L^p$ solutions of backward stochastic differential equations. Stochastic Processes and their Applications 108, (2003), 109–129. 1075.65503 10.1016/S0304-4149(03)00089-9[2] Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L.: $L^p$ solutions of backward stochastic differential equations. Stochastic Processes and their Applications 108, (2003), 109–129. 1075.65503 10.1016/S0304-4149(03)00089-9

3.

[3] Chen, Z. and Peng, S.: Continuous properties of $g$-martingales. Chin. Ann. of Math. 22B, (2001), 115–128.[3] Chen, Z. and Peng, S.: Continuous properties of $g$-martingales. Chin. Ann. of Math. 22B, (2001), 115–128.

4.

[4] Coquet, F., Hu, Y., Mémin, J. and Peng, S.: Filtration-consistent nonlinear expectations and related g-expectations. Probab. Theory Relat. Fields 123, (2002), 1–27. 1007.60057 10.1007/s004400100172[4] Coquet, F., Hu, Y., Mémin, J. and Peng, S.: Filtration-consistent nonlinear expectations and related g-expectations. Probab. Theory Relat. Fields 123, (2002), 1–27. 1007.60057 10.1007/s004400100172

5.

[5] Crandall, M. G., Ishii, H. and Lions, P. L.: User’s guide to viscosity solutions of second order partial differential equations. Bulletin of The American Mathematical Society 27(1), (1992), 1–67. 0755.35015 10.1090/S0273-0979-1992-00266-5[5] Crandall, M. G., Ishii, H. and Lions, P. L.: User’s guide to viscosity solutions of second order partial differential equations. Bulletin of The American Mathematical Society 27(1), (1992), 1–67. 0755.35015 10.1090/S0273-0979-1992-00266-5

6.

[6] Cvitanic, J. and Karatzas, I.: Hedging contingent claims with constrained portfolios. Ann. of Appl. Proba. 3(3), (1993), 652–681. 0825.93958 10.1214/aoap/1177005357 euclid.aoap/1177005357[6] Cvitanic, J. and Karatzas, I.: Hedging contingent claims with constrained portfolios. Ann. of Appl. Proba. 3(3), (1993), 652–681. 0825.93958 10.1214/aoap/1177005357 euclid.aoap/1177005357

7.

[7] Delbaen, F., Peng, S. and Rosazza, G. E.: Representation of the penalty term of dynamic concave utilities. Finance and Stochastics 14, (2010), 449–472. 1226.91025 10.1007/s00780-009-0119-7[7] Delbaen, F., Peng, S. and Rosazza, G. E.: Representation of the penalty term of dynamic concave utilities. Finance and Stochastics 14, (2010), 449–472. 1226.91025 10.1007/s00780-009-0119-7

8.

[8] Denis, L., Hu, M. and Peng S.: Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes. Potential Anal. 34, (2011), 139–161.[8] Denis, L., Hu, M. and Peng S.: Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes. Potential Anal. 34, (2011), 139–161.

9.

[9] Doob, L.: Stochastic Process. John Wiley & Sons, New York, NY, USA, (1953).[9] Doob, L.: Stochastic Process. John Wiley & Sons, New York, NY, USA, (1953).

10.

[10] Hu, M., Ji, S., Peng, S. and Song, Y.: Backward stochastic differential equations driven by $G$-Brownian motion. Stochastic Processes and their Applications 124, (2014), 759–784. 1300.60074 10.1016/j.spa.2013.09.010[10] Hu, M., Ji, S., Peng, S. and Song, Y.: Backward stochastic differential equations driven by $G$-Brownian motion. Stochastic Processes and their Applications 124, (2014), 759–784. 1300.60074 10.1016/j.spa.2013.09.010

11.

[11] Hu, M., Ji, S., Peng, S. and Song, Y.: Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by $G$-Brownian motion. Stochastic Processes and their Applications 124, (2014), 1170–1195. 1300.60075 10.1016/j.spa.2013.10.009[11] Hu, M., Ji, S., Peng, S. and Song, Y.: Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by $G$-Brownian motion. Stochastic Processes and their Applications 124, (2014), 1170–1195. 1300.60075 10.1016/j.spa.2013.10.009

12.

[12] Hu, M. and Peng, S.: On representation theorem of $G$-expectations and paths of $G$-Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25(3), (2009), 539–546. 1190.60043 10.1007/s10255-008-8831-1[12] Hu, M. and Peng, S.: On representation theorem of $G$-expectations and paths of $G$-Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25(3), (2009), 539–546. 1190.60043 10.1007/s10255-008-8831-1

13.

[13] Hu, M. and Peng, S.: Extended conditional $G$-expectations and related stopping times,  arXiv:1309.3829v1 1309.3829v1[13] Hu, M. and Peng, S.: Extended conditional $G$-expectations and related stopping times,  arXiv:1309.3829v1 1309.3829v1

14.

[14] Karatzas, I.: On the pricing of American options. Applied Mathematics and Optimization 17, (1988), 37–60. 0699.90010 10.1007/BF01448358[14] Karatzas, I.: On the pricing of American options. Applied Mathematics and Optimization 17, (1988), 37–60. 0699.90010 10.1007/BF01448358

15.

[15] Li, X. and Peng, S.: Stopping times and related Itô’s calculus with $G$-Brownian motion. Stochastic Processes and their Applications 121, (2011), 1492–1508. 1225.60088 10.1016/j.spa.2011.03.009[15] Li, X. and Peng, S.: Stopping times and related Itô’s calculus with $G$-Brownian motion. Stochastic Processes and their Applications 121, (2011), 1492–1508. 1225.60088 10.1016/j.spa.2011.03.009

16.

[16] Meyer, P. A.: A decomposition theorem for supermartingales. Illinois J. Math. 6, (1962), 193–205. 0133.40304 euclid.ijm/1255632318[16] Meyer, P. A.: A decomposition theorem for supermartingales. Illinois J. Math. 6, (1962), 193–205. 0133.40304 euclid.ijm/1255632318

17.

[17] Meyer, P. A.: Decomposition for supermartingales: the uniqueness theorem. Illinois J. Math. 7, (1963), 1–17. 0133.40401 euclid.ijm/1255637477[17] Meyer, P. A.: Decomposition for supermartingales: the uniqueness theorem. Illinois J. Math. 7, (1963), 1–17. 0133.40401 euclid.ijm/1255637477

18.

[18] Pardoux, E. and Peng, S.: Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14, (1990), 55–61. 0692.93064 10.1016/0167-6911(90)90082-6[18] Pardoux, E. and Peng, S.: Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14, (1990), 55–61. 0692.93064 10.1016/0167-6911(90)90082-6

19.

[19] Peng, S.: BSDE and related g-expectations. In El Karoui, N., Mazliak, L. (eds.) Backward Stochastic Differential Equations, No. 364 in Pitman Research Notes in Mathematics Series, Addison Wesley, Longman, London, (1997), 141–159. 0892.60066[19] Peng, S.: BSDE and related g-expectations. In El Karoui, N., Mazliak, L. (eds.) Backward Stochastic Differential Equations, No. 364 in Pitman Research Notes in Mathematics Series, Addison Wesley, Longman, London, (1997), 141–159. 0892.60066

20.

[20] Peng, S.: Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type. Probab. Theory Relat. Fields. 113, (1999), 473–499. 0953.60059 10.1007/s004400050214[20] Peng, S.: Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type. Probab. Theory Relat. Fields. 113, (1999), 473–499. 0953.60059 10.1007/s004400050214

21.

[21] Peng, S.: Nonlinear expectations, nonlinear evaluations and risk measures, in: Lectures Notes in CIME-EMS Summer School, 2003, Bressanone, in: Springer’s Lecture Notes in Mathematics, vol. 1856.[21] Peng, S.: Nonlinear expectations, nonlinear evaluations and risk measures, in: Lectures Notes in CIME-EMS Summer School, 2003, Bressanone, in: Springer’s Lecture Notes in Mathematics, vol. 1856.

22.

[22] Peng, S.: Dynamically consistent nonlinear evaluations and expectations,  arXiv:math/0501415v1[22] Peng, S.: Dynamically consistent nonlinear evaluations and expectations,  arXiv:math/0501415v1

23.

[23] Peng, S.: $G$-expectation, $G$-Brownian Motion and Related Stochastic Calculus of Itô type. Stochastic analysis and applications (2007) 541–567, Abel Symp., 2, Springer, Berlin.[23] Peng, S.: $G$-expectation, $G$-Brownian Motion and Related Stochastic Calculus of Itô type. Stochastic analysis and applications (2007) 541–567, Abel Symp., 2, Springer, Berlin.

24.

[24] Peng, S.: Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation. Stochastic Processes and their Applications 118(12), (2008), 2223–2253. 1158.60023 10.1016/j.spa.2007.10.015[24] Peng, S.: Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation. Stochastic Processes and their Applications 118(12), (2008), 2223–2253. 1158.60023 10.1016/j.spa.2007.10.015

25.

[25] Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty,  arXiv:1002.4546v1 1002.4546v1[25] Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty,  arXiv:1002.4546v1 1002.4546v1

26.

[26] Peng, S., Song, Y. and Zhang, J. A complete representation theorem for G-martingales. Stochastics 86(4), (2014), 609–631. MR3230070 1337.60130 10.1080/17442508.2013.865130[26] Peng, S., Song, Y. and Zhang, J. A complete representation theorem for G-martingales. Stochastics 86(4), (2014), 609–631. MR3230070 1337.60130 10.1080/17442508.2013.865130

27.

[27] Pham, T. and Zhang, J.: Some norm estimates for semimaringales. Electron. J. Probab. 18, (2013), 1–25.[27] Pham, T. and Zhang, J.: Some norm estimates for semimaringales. Electron. J. Probab. 18, (2013), 1–25.

28.

[28] Soner, M., Touzi, N. and Zhang, J.: Martingale representation theorem under G-expectation. Stochastic Processes and Their Applications. 121, (2011), 265–287. 1228.60070 10.1016/j.spa.2010.10.006[28] Soner, M., Touzi, N. and Zhang, J.: Martingale representation theorem under G-expectation. Stochastic Processes and Their Applications. 121, (2011), 265–287. 1228.60070 10.1016/j.spa.2010.10.006

29.

[29] Soner, M., Touzi, N. and Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153, (2012), 149–190. 1252.60056 10.1007/s00440-011-0342-y[29] Soner, M., Touzi, N. and Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153, (2012), 149–190. 1252.60056 10.1007/s00440-011-0342-y

30.

[30] Song, Y.: Some properties on G-evaluation and its applications to G-martingale decomposition. Science China Mathematics 54, (2011), 287–300. 1225.60058 10.1007/s11425-010-4162-9[30] Song, Y.: Some properties on G-evaluation and its applications to G-martingale decomposition. Science China Mathematics 54, (2011), 287–300. 1225.60058 10.1007/s11425-010-4162-9

31.

[31] Song, Y.: Uniqueness of the representation for G-martingales with finite variation. Electron. J. Probab 17, (2012), 1-15. 1244.60046 10.1214/EJP.v17-1890[31] Song, Y.: Uniqueness of the representation for G-martingales with finite variation. Electron. J. Probab 17, (2012), 1-15. 1244.60046 10.1214/EJP.v17-1890
Hanwu Li, Shige Peng, and Yongsheng Song "Supermartingale decomposition theorem under $G$-expectation," Electronic Journal of Probability 23(none), 1-20, (2018). https://doi.org/10.1214/18-EJP173
Received: 8 March 2017; Accepted: 28 April 2018; Published: 2018
Vol.23 • 2018
Back to Top