Open Access
2018 On the Liouville heat kernel for $k$-coarse MBRW
Jian Ding, Ofer Zeitouni, Fuxi Zhang
Electron. J. Probab. 23: 1-20 (2018). DOI: 10.1214/18-EJP189
Abstract

We study the Liouville heat kernel (in the $L^2$ phase) associated with a class of logarithmically correlated Gaussian fields on the two dimensional torus. We show that for each $\varepsilon >0$ there exists such a field, whose covariance is a bounded perturbation of that of the two dimensional Gaussian free field, and such that the associated Liouville heat kernel satisfies the short time estimates, \[\exp \left ( - t^{ - \frac 1 { 1 + \frac 1 2 \gamma ^2 } - \varepsilon } \right ) \le p_t^\gamma (x, y) \le \exp \left ( - t^{- \frac 1 { 1 + \frac 1 2 \gamma ^2 } + \varepsilon } \right ) ,\] for $\gamma <1/2$. In particular, these are different from predictions, due to Watabiki, concerning the Liouville heat kernel for the two dimensional Gaussian free field.

References

1.

[1] R. J. Adler. An introduction to continuity, extrema and related topics for general gaussian processes. 1990. Lecture Notes – Monograph Series. Institute Mathematical Statistics, Hayward, CA.[1] R. J. Adler. An introduction to continuity, extrema and related topics for general gaussian processes. 1990. Lecture Notes – Monograph Series. Institute Mathematical Statistics, Hayward, CA.

2.

[2] S. Andres and N. Kajino. Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions. Probab. Theory Related Fields 166 (3–4):713–752 (2016).[2] S. Andres and N. Kajino. Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions. Probab. Theory Related Fields 166 (3–4):713–752 (2016).

3.

[3] N. Berestycki, C. Garban, R. Rhodes and V. Vargas. KPZ formula derived from Liouville heat kernel. J. Lond. Math. Soc. (2) 94 (1):186–208 (2016).[3] N. Berestycki, C. Garban, R. Rhodes and V. Vargas. KPZ formula derived from Liouville heat kernel. J. Lond. Math. Soc. (2) 94 (1):186–208 (2016).

4.

[4] N. Berestycki. Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincare Probab. Stat. 51 (3):947–964 (2015).[4] N. Berestycki. Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincare Probab. Stat. 51 (3):947–964 (2015).

5.

[5] N. Berestycki. Introduction to the Gaussian Free Field and Liouville Quantum Gravity. Preprint, available at  http://www.statslab.cam.ac.uk/~beresty/Articles/oxford4.pdf[5] N. Berestycki. Introduction to the Gaussian Free Field and Liouville Quantum Gravity. Preprint, available at  http://www.statslab.cam.ac.uk/~beresty/Articles/oxford4.pdf

6.

[6] J. Ding and F. Zhang. Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields 2015. Preprint  http://arxiv.org/abs/1506.03293. To appear, Probability Theory Related Fields.[6] J. Ding and F. Zhang. Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields 2015. Preprint  http://arxiv.org/abs/1506.03293. To appear, Probability Theory Related Fields.

7.

[7] J. Ding, R. Roy and O. Zeitouni. Convergence of the centered maximum of log-correlated Gaussian fields. Annals Probab. 45(6A): 3886–3928. (2017) 06838110 10.1214/16-AOP1152 euclid.aop/1511773667[7] J. Ding, R. Roy and O. Zeitouni. Convergence of the centered maximum of log-correlated Gaussian fields. Annals Probab. 45(6A): 3886–3928. (2017) 06838110 10.1214/16-AOP1152 euclid.aop/1511773667

8.

[8] J. Ding and S. Goswami. Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Preprint  http://arxiv.org/abs/1610.09998.[8] J. Ding and S. Goswami. Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Preprint  http://arxiv.org/abs/1610.09998.

9.

[9] J. Ding, O. Zeitouni and F. Zhang. Heat kernel for Liouville Brownian motion and Liouville graph distance. In preparation, 2018.[9] J. Ding, O. Zeitouni and F. Zhang. Heat kernel for Liouville Brownian motion and Liouville graph distance. In preparation, 2018.

10.

[10] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math. 185 (2):333–393 (2011).[10] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math. 185 (2):333–393 (2011).

11.

[11] B. Duplantier, J. Miller and S. Sheffield. Liouville quantum gravity as a mating of trees. Preprint  http://arxiv.org/abs/1409.7055.[11] B. Duplantier, J. Miller and S. Sheffield. Liouville quantum gravity as a mating of trees. Preprint  http://arxiv.org/abs/1409.7055.

12.

[12] F. David, A. Kupiainen, R. Rhodes and V. Vargas. Liouville quantum gravity of the Riemann sphere. Comm. Math. Phys. 342 (3):869–907 (2016).[12] F. David, A. Kupiainen, R. Rhodes and V. Vargas. Liouville quantum gravity of the Riemann sphere. Comm. Math. Phys. 342 (3):869–907 (2016).

13.

[13] C. Garban, R. Rhodes and V. Vargas. Liouville Brownian motion. Annals Probab. 44 (4):3076–3110 (2016).[13] C. Garban, R. Rhodes and V. Vargas. Liouville Brownian motion. Annals Probab. 44 (4):3076–3110 (2016).

14.

[14] C. Garban, R. Rhodes and V. Vargas. On the heat kernel and the Dirichlet form of Liouville Brownian motion Electron. J. Probab. 19 (96):1–25 (2014).[14] C. Garban, R. Rhodes and V. Vargas. On the heat kernel and the Dirichlet form of Liouville Brownian motion Electron. J. Probab. 19 (96):1–25 (2014).

15.

[15] J.-P. Kahane. Sur le chaos multiplicatif. Annales des sciences mathematiques du Quebec 9 (2):105–150 (1985). 0596.60041[15] J.-P. Kahane. Sur le chaos multiplicatif. Annales des sciences mathematiques du Quebec 9 (2):105–150 (1985). 0596.60041

16.

[16] M. Ledoux. The concentration of measure phenomenon, volume 89 of mathematical surveys and monographs. 2001. American Mathematical Society, Providence, RI.[16] M. Ledoux. The concentration of measure phenomenon, volume 89 of mathematical surveys and monographs. 2001. American Mathematical Society, Providence, RI.

17.

[17] P. Maillard, R. Rhodes, V. Vargas and O. Zeitouni. Liouville heat kernel: regularity and bounds. Annales Inst. H. Poincare 52:1281–1320 (2016).[17] P. Maillard, R. Rhodes, V. Vargas and O. Zeitouni. Liouville heat kernel: regularity and bounds. Annales Inst. H. Poincare 52:1281–1320 (2016).

18.

[18] P. M$\ddot{\rm o} $rters and Y. Peres. Brownian motion. Cambridge University Press, 2010.[18] P. M$\ddot{\rm o} $rters and Y. Peres. Brownian motion. Cambridge University Press, 2010.

19.

[19] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11:315–392 (2014).[19] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11:315–392 (2014).

20.

[20] Y. Watabiki. Analytic Study of Fractal Structure of Quantized Surface in Two-Dimensional Quantum Gravity. Progress of Theoretical Physics 114 (Supplement):1–17 (1993).[20] Y. Watabiki. Analytic Study of Fractal Structure of Quantized Surface in Two-Dimensional Quantum Gravity. Progress of Theoretical Physics 114 (Supplement):1–17 (1993).
Jian Ding, Ofer Zeitouni, and Fuxi Zhang "On the Liouville heat kernel for $k$-coarse MBRW," Electronic Journal of Probability 23(none), 1-20, (2018). https://doi.org/10.1214/18-EJP189
Received: 11 January 2017; Accepted: 12 June 2018; Published: 2018
Vol.23 • 2018
Back to Top