Open Access
2018 Dirichlet form associated with the $\Phi _3^4$ model
Rongchan Zhu, Xiangchan Zhu
Electron. J. Probab. 23: 1-31 (2018). DOI: 10.1214/18-EJP207
Abstract

We construct the Dirichlet form associated with the dynamical $\Phi ^4_3$ model obtained in [23, 7] and [37]. This Dirichlet form on cylinder functions is identified as a classical gradient bilinear form. As a consequence, this classical gradient bilinear form is closable and then by a well-known result its closure is also a quasi-regular Dirichlet form, which means that there exists another (Markov) diffusion process, which also admits the $\Phi ^4_3$ field measure as an invariant (even symmetrizing) measure.

References

1.

[1] S. Albeverio, S. Liang and B. Zegarlinski, Remark on the integration by parts formula for the $\Phi ^4_3$-quantum field model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, no. 1, (2006), 149–154. 1091.81064 10.1142/S0219025706002275[1] S. Albeverio, S. Liang and B. Zegarlinski, Remark on the integration by parts formula for the $\Phi ^4_3$-quantum field model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, no. 1, (2006), 149–154. 1091.81064 10.1142/S0219025706002275

2.

[2] S. Albeverio, M. Röckner, Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms, Probab. Theory Related Field 89 (1991) 347–386. MR1113223 10.1007/BF01198791[2] S. Albeverio, M. Röckner, Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms, Probab. Theory Related Field 89 (1991) 347–386. MR1113223 10.1007/BF01198791

3.

[3] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011. MR2768550[3] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011. MR2768550

4.

[4] L. Bertini, G. Giacomin, Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183, no. 3, (1997), 571–607. 0874.60059 10.1007/s002200050044 euclid.cmp/1158328658[4] L. Bertini, G. Giacomin, Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183, no. 3, (1997), 571–607. 0874.60059 10.1007/s002200050044 euclid.cmp/1158328658

5.

[5] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14, no. 2, (1981), 209–246.[5] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14, no. 2, (1981), 209–246.

6.

[6] D. C. Brydges, J. Fröhlich, and A. D. Sokal. A new proof of the existence and nontriviality of the continuum $\Phi ^4_2$ and $\Phi ^4_3$ quantum field theories. Comm. Math. Phys. 91, no. 2, (1983), 141–186.[6] D. C. Brydges, J. Fröhlich, and A. D. Sokal. A new proof of the existence and nontriviality of the continuum $\Phi ^4_2$ and $\Phi ^4_3$ quantum field theories. Comm. Math. Phys. 91, no. 2, (1983), 141–186.

7.

[7] Rémi Catellier, Khalil Chouk, Paracontrolled Distributions and the 3-dimensional Stochastic Quantization Equation,  arXiv:1310.6869, to appear in the annals of probability. 1310.6869 MR3846835 06964345 10.1214/17-AOP1235 euclid.aop/1535097636[7] Rémi Catellier, Khalil Chouk, Paracontrolled Distributions and the 3-dimensional Stochastic Quantization Equation,  arXiv:1310.6869, to appear in the annals of probability. 1310.6869 MR3846835 06964345 10.1214/17-AOP1235 euclid.aop/1535097636

8.

[8] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, Stochastic calculus for symmetric Markov processes, The Annals of Probability 2008, Vol. 36, No. 3, 931–970. 1142.31005 10.1214/07-AOP347 euclid.aop/1207749086[8] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, Stochastic calculus for symmetric Markov processes, The Annals of Probability 2008, Vol. 36, No. 3, 931–970. 1142.31005 10.1214/07-AOP347 euclid.aop/1207749086

9.

[9] K. L. Chung, Lectures from Markov Processes to Brownian Motion, New York: Springer. 0503.60073[9] K. L. Chung, Lectures from Markov Processes to Brownian Motion, New York: Springer. 0503.60073

10.

[10] G. Da Prato, A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31(4):1900–1916, (2003). 1071.81070 10.1214/aop/1068646370 euclid.aop/1068646370[10] G. Da Prato, A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31(4):1900–1916, (2003). 1071.81070 10.1214/aop/1068646370 euclid.aop/1068646370

11.

[11] G. Da Prato, J. Zabczyk, Second order partial differential equations in Hilbert spaces, Cambridge University Press (2002). 1012.35001[11] G. Da Prato, J. Zabczyk, Second order partial differential equations in Hilbert spaces, Cambridge University Press (2002). 1012.35001

12.

[12] J. Feldman, The $\Phi ^4_3$ field theory in a finite volume. Comm. Math. Phys. 37, (1974), 93–120.[12] J. Feldman, The $\Phi ^4_3$ field theory in a finite volume. Comm. Math. Phys. 37, (1974), 93–120.

13.

[13] P. J. Fitzsimmons, Even and odd continuous additive functionals. In Dirichlet Forms and Stochastic Processes (Beijing, 1993) (Z.-M. Ma, M. Röckner and J.-A. Yan, eds.) 139–154. de Gruyter, Berlin, (1995). 0844.60048[13] P. J. Fitzsimmons, Even and odd continuous additive functionals. In Dirichlet Forms and Stochastic Processes (Beijing, 1993) (Z.-M. Ma, M. Röckner and J.-A. Yan, eds.) 139–154. de Gruyter, Berlin, (1995). 0844.60048

14.

[14] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin (1994). 0838.31001[14] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin (1994). 0838.31001

15.

[15] J. Glimm, A. Jaffe, Quantum physics. Springer-Verlag, New York, second ed., 1987. A functional integral point of view.[15] J. Glimm, A. Jaffe, Quantum physics. Springer-Verlag, New York, second ed., 1987. A functional integral point of view.

16.

[16] P. Goncalves and M. Jara. Nonlinear Fluctuations of Weakly Asymmetric Interacting Particle Systems. Archive for Rational Mechanics and Analysis, 212(2):597–644, 2013. 1293.35336 10.1007/s00205-013-0693-x[16] P. Goncalves and M. Jara. Nonlinear Fluctuations of Weakly Asymmetric Interacting Particle Systems. Archive for Rational Mechanics and Analysis, 212(2):597–644, 2013. 1293.35336 10.1007/s00205-013-0693-x

17.

[17] M. Gubinelli, P. Imkeller, N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 no. 6 (2015). 1333.60149 10.1017/fmp.2015.2[17] M. Gubinelli, P. Imkeller, N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 no. 6 (2015). 1333.60149 10.1017/fmp.2015.2

18.

[18] M. Gubinelli, M. Jara. Regularization by noise and stochastic Burgers equations. Stochastic Partial Differential Equations: Analysis and Computations 1.2 (2013): 325–350. 1312.35150 10.1007/s40072-013-0011-5[18] M. Gubinelli, M. Jara. Regularization by noise and stochastic Burgers equations. Stochastic Partial Differential Equations: Analysis and Computations 1.2 (2013): 325–350. 1312.35150 10.1007/s40072-013-0011-5

19.

[19] M. Gubinelli, N. Perkowski, KPZ reloaded, Communications in Mathematical Physics, 349(1):165–269, (2017).[19] M. Gubinelli, N. Perkowski, KPZ reloaded, Communications in Mathematical Physics, 349(1):165–269, (2017).

20.

[20] M. Gubinelli, N. Perkowski, Energy solutions of KPZ are unique, Journal of the American Mathematical Society 31 (2), (2018), 427–471. 06836099 10.1090/jams/889[20] M. Gubinelli, N. Perkowski, Energy solutions of KPZ are unique, Journal of the American Mathematical Society 31 (2), (2018), 427–471. 06836099 10.1090/jams/889

21.

[21] F. Guerra, J. Rosen, B. Simon: The $P(\Phi )_2$ Euclidean quantum field theory as classical statistical mechanics. Ann. Math. 101, 11–259 (1975).[21] F. Guerra, J. Rosen, B. Simon: The $P(\Phi )_2$ Euclidean quantum field theory as classical statistical mechanics. Ann. Math. 101, 11–259 (1975).

22.

[22] M. Hairer, Solving the KPZ equation. Ann. of Math. (2) 178, no. 2, (2013), 559–664. 1281.60060 10.4007/annals.2013.178.2.4[22] M. Hairer, Solving the KPZ equation. Ann. of Math. (2) 178, no. 2, (2013), 559–664. 1281.60060 10.4007/annals.2013.178.2.4

23.

[23] M. Hairer, A theory of regularity structures. Invent. Math. 198(2), 269–504, (2014).[23] M. Hairer, A theory of regularity structures. Invent. Math. 198(2), 269–504, (2014).

24.

[24] M. Hairer, K. Matetski, Discretisations of rough stochastic PDEs, The Annals of Probability 46 (3), (2018), 1651–1709. 06894783 10.1214/17-AOP1212 euclid.aop/1523520026[24] M. Hairer, K. Matetski, Discretisations of rough stochastic PDEs, The Annals of Probability 46 (3), (2018), 1651–1709. 06894783 10.1214/17-AOP1212 euclid.aop/1523520026

25.

[25] M. Hairer and J. Mattingly. The strong Feller property for singular stochastic PDEs. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 54 (3) (2018), 1314–1340. 06976077 10.1214/17-AIHP840 euclid.aihp/1531296021[25] M. Hairer and J. Mattingly. The strong Feller property for singular stochastic PDEs. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 54 (3) (2018), 1314–1340. 06976077 10.1214/17-AIHP840 euclid.aihp/1531296021

26.

[26] M. Hairer and É. Pardoux, A Wong-Zakai theorem for stochastic PDEs, Journal of the Mathematical Society of Japan 67 (4), (2015), 1551–1604. MR3417505 1341.60062 10.2969/jmsj/06741551 euclid.jmsj/1445951158[26] M. Hairer and É. Pardoux, A Wong-Zakai theorem for stochastic PDEs, Journal of the Mathematical Society of Japan 67 (4), (2015), 1551–1604. MR3417505 1341.60062 10.2969/jmsj/06741551 euclid.jmsj/1445951158

27.

[27] M. Hairer, H. Shen. The dynamical sine-Gordon model. Communications in Mathematical Physics, 2016, 341(3), 1–57. 1336.60120 10.1007/s00220-015-2525-3[27] M. Hairer, H. Shen. The dynamical sine-Gordon model. Communications in Mathematical Physics, 2016, 341(3), 1–57. 1336.60120 10.1007/s00220-015-2525-3

28.

[28] M. Hairer and P. Schoenbauer. The strong support theorem for singular stochastic PDEs. In preparation.[28] M. Hairer and P. Schoenbauer. The strong support theorem for singular stochastic PDEs. In preparation.

29.

[29] G. Jona-Lasinio and P. K. Mitter. On the stochastic quantization of field theory. Comm. Math. Phys., 101(3):409–436, 1985. 0588.60054 10.1007/BF01216097 euclid.cmp/1104114183[29] G. Jona-Lasinio and P. K. Mitter. On the stochastic quantization of field theory. Comm. Math. Phys., 101(3):409–436, 1985. 0588.60054 10.1007/BF01216097 euclid.cmp/1104114183

30.

[30] M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, no. 9, (1986), 889–892. 1101.82329 10.1103/PhysRevLett.56.889[30] M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, no. 9, (1986), 889–892. 1101.82329 10.1103/PhysRevLett.56.889

31.

[31] A. Kupiainen. Renormalization group and stochastic PDE’s. Annales Henri Poincaré, 2016, 17(3):497–535.[31] A. Kupiainen. Renormalization group and stochastic PDE’s. Annales Henri Poincaré, 2016, 17(3):497–535.

32.

[32] W. Liu, M. Röckner. Stochastic Partial Differential Equations: An Introduction. Springer, (2015).[32] W. Liu, M. Röckner. Stochastic Partial Differential Equations: An Introduction. Springer, (2015).

33.

[33] T. J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14, no. 2, (1998), 215–310. 0923.34056 10.4171/RMI/240[33] T. J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14, no. 2, (1998), 215–310. 0923.34056 10.4171/RMI/240

34.

[34] Z. M. Ma and M. Röckner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms (Springer-Verlag, Berlin, Heidelberg, New York, 1992.[34] Z. M. Ma and M. Röckner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms (Springer-Verlag, Berlin, Heidelberg, New York, 1992.

35.

[35] J.-C. Mourrat, H. Weber. Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi ^4_2$. Preprint, Communications on Pure and Applied Mathematics 70 (4), (2017), 717–812. 1364.82013 10.1002/cpa.21655[35] J.-C. Mourrat, H. Weber. Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi ^4_2$. Preprint, Communications on Pure and Applied Mathematics 70 (4), (2017), 717–812. 1364.82013 10.1002/cpa.21655

36.

[36] J.-C. Mourrat, H. Weber, Global well-posedness of the dynamic $\Phi ^4$ model in the plane, The Annals of Probability 45 (4), (2017), 2398–2476. 1381.60098 10.1214/16-AOP1116 euclid.aop/1502438431[36] J.-C. Mourrat, H. Weber, Global well-posedness of the dynamic $\Phi ^4$ model in the plane, The Annals of Probability 45 (4), (2017), 2398–2476. 1381.60098 10.1214/16-AOP1116 euclid.aop/1502438431

37.

[37] J.-C. Mourrat, H. Weber, Global well-posedness of the dynamic $\Phi ^4_3$ model on the torus, first edition,  arXiv:1601.012341601.01234[37] J.-C. Mourrat, H. Weber, Global well-posedness of the dynamic $\Phi ^4_3$ model on the torus, first edition,  arXiv:1601.012341601.01234

38.

[38] J.-C. Mourrat, H. Weber, The dynamic $\Phi ^4_3$ model comes down from infinity, Communications in Mathematical Physics 356 (3), (2017), 673–753. 1384.81068 10.1007/s00220-017-2997-4[38] J.-C. Mourrat, H. Weber, The dynamic $\Phi ^4_3$ model comes down from infinity, Communications in Mathematical Physics 356 (3), (2017), 673–753. 1384.81068 10.1007/s00220-017-2997-4

39.

[39] S. Nakao, Stochastic calculus for continuous additive functionals of zero energy. Z. Wahrsch. Verw. Gebiete 68 557–578, (1985). 0604.60068 10.1007/BF00535345[39] S. Nakao, Stochastic calculus for continuous additive functionals of zero energy. Z. Wahrsch. Verw. Gebiete 68 557–578, (1985). 0604.60068 10.1007/BF00535345

40.

[40] G. Parisi, Y. S. Wu. Perturbation theory without gauge fixing. Sci. Sinica 24, no. 4, (1981), 483–496. MR626795[40] G. Parisi, Y. S. Wu. Perturbation theory without gauge fixing. Sci. Sinica 24, no. 4, (1981), 483–496. MR626795

41.

[41] Y. M. Park, Lattice approximation of the $(\lambda \varphi ^4-\mu \varphi )_3$ field theory in a finite volume, J. Math. Phys. 16, 1065–1075 (1975).[41] Y. M. Park, Lattice approximation of the $(\lambda \varphi ^4-\mu \varphi )_3$ field theory in a finite volume, J. Math. Phys. 16, 1065–1075 (1975).

42.

[42] Y. M. Park, Convergence of lattice approximations and infinite volume limit in the $(\lambda \phi ^4-\sigma \phi ^2-\tau \phi )_3$ field theory. J. Mathematical Phys. 18, no. 3, (1977), 354–366.[42] Y. M. Park, Convergence of lattice approximations and infinite volume limit in the $(\lambda \phi ^4-\sigma \phi ^2-\tau \phi )_3$ field theory. J. Mathematical Phys. 18, no. 3, (1977), 354–366.

43.

[43] C. Prevot, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1905, Springer, (2007). MR2329435[43] C. Prevot, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1905, Springer, (2007). MR2329435

44.

[44] M. Röckner, R. Zhu, X. Zhu, Restricted Markov uniqueness for the stochastic quantization of $P(\phi )_2$ and its applications, Journal of Functional Analysis 272 (10), (2017), 4263–4303. 06766515 10.1016/j.jfa.2017.01.023[44] M. Röckner, R. Zhu, X. Zhu, Restricted Markov uniqueness for the stochastic quantization of $P(\phi )_2$ and its applications, Journal of Functional Analysis 272 (10), (2017), 4263–4303. 06766515 10.1016/j.jfa.2017.01.023

45.

[45] M. Röckner, R. Zhu, X. Zhu, Ergodicity for the stochastic quantization problems on the 2D-torus, Communications in Mathematical Physics 352 (3), (2017) 1061–1090. 1376.81045 10.1007/s00220-017-2865-2[45] M. Röckner, R. Zhu, X. Zhu, Ergodicity for the stochastic quantization problems on the 2D-torus, Communications in Mathematical Physics 352 (3), (2017) 1061–1090. 1376.81045 10.1007/s00220-017-2865-2

46.

[46] E. M. Stein, G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. 0232.42007[46] E. M. Stein, G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971. 0232.42007

47.

[47] H. Triebel, Theory of function spaces III. Basel, Birkhäuser, (2006).[47] H. Triebel, Theory of function spaces III. Basel, Birkhäuser, (2006).

48.

[48] F. Y. Wang, Functional Inequalities, Markov Semigroup and Spectral Theory. Chinese Sciences Press, Beijing (2005).[48] F. Y. Wang, Functional Inequalities, Markov Semigroup and Spectral Theory. Chinese Sciences Press, Beijing (2005).

49.

[49] R. Zhu, X. Zhu, Approximating three-dimensional Navier-Stokes equations driven by space-time white noise,Infinite Dimensional Analysis, Quantum Probability and Related Topics, 20, 04 (2017). 1386.60230 10.1142/S0219025717500205[49] R. Zhu, X. Zhu, Approximating three-dimensional Navier-Stokes equations driven by space-time white noise,Infinite Dimensional Analysis, Quantum Probability and Related Topics, 20, 04 (2017). 1386.60230 10.1142/S0219025717500205

50.

[50] R. Zhu, X. Zhu, Lattice approximation to the dynamical $\Phi _3^4$ model, The Annals of Probability 46 (1), 397–455. 1393.82014 10.1214/17-AOP1188 euclid.aop/1517821226[50] R. Zhu, X. Zhu, Lattice approximation to the dynamical $\Phi _3^4$ model, The Annals of Probability 46 (1), 397–455. 1393.82014 10.1214/17-AOP1188 euclid.aop/1517821226

51.

[51] R. Zhu, X. Zhu, Three-dimensional Navier-Stokes equations driven by space-time white noise, Journal of Differential Equations, 259, 9, 5, 2015, 4443–4508. 1336.60127 10.1016/j.jde.2015.06.002[51] R. Zhu, X. Zhu, Three-dimensional Navier-Stokes equations driven by space-time white noise, Journal of Differential Equations, 259, 9, 5, 2015, 4443–4508. 1336.60127 10.1016/j.jde.2015.06.002
Rongchan Zhu and Xiangchan Zhu "Dirichlet form associated with the $\Phi _3^4$ model," Electronic Journal of Probability 23(none), 1-31, (2018). https://doi.org/10.1214/18-EJP207
Received: 1 July 2017; Accepted: 26 July 2018; Published: 2018
Vol.23 • 2018
Back to Top