Open Access
2018 Chordal SLE$_6$ explorations of a quantum disk
Ewain Gwynne, Jason Miller
Electron. J. Probab. 23: 1-24 (2018). DOI: 10.1214/18-EJP161
Abstract

We consider a particular type of $\sqrt{8/3} $-Liouville quantum gravity surface called a doubly marked quantum disk (equivalently, a Brownian disk) decorated by an independent chordal SLE$_6$ curve $\eta $ between its marked boundary points. We obtain descriptions of the law of the quantum surfaces parameterized by the complementary connected components of $\eta ([0,t])$ for each time $t \geq 0$ as well as the law of the left/right $\sqrt{8/3} $-quantum boundary length process for $\eta $.

References

1.

[1] Juhan Aru, Yichao Huang, and Xin Sun. Two perspectives of the 2D unit area quantum sphere and their equivalence. Comm. Math. Phys., 356(1):261–283, 2017. 06796698 10.1007/s00220-017-2979-6[1] Juhan Aru, Yichao Huang, and Xin Sun. Two perspectives of the 2D unit area quantum sphere and their equivalence. Comm. Math. Phys., 356(1):261–283, 2017. 06796698 10.1007/s00220-017-2979-6

2.

[2] E. Baur, G. Miermont, and G. Ray. Classification of scaling limits of uniform quadrangulations with a boundary. ArXiv e-prints, August 2016.[2] E. Baur, G. Miermont, and G. Ray. Classification of scaling limits of uniform quadrangulations with a boundary. ArXiv e-prints, August 2016.

3.

[3] S. Benoist. Natural parametrization of SLE: the Gaussian free field point of view. ArXiv e-prints, August 2017.[3] S. Benoist. Natural parametrization of SLE: the Gaussian free field point of view. ArXiv e-prints, August 2017.

4.

[4] N. Berestycki, S. Sheffield, and X. Sun. Equivalence of Liouville measure and Gaussian free field. ArXiv e-prints, October 2014.[4] N. Berestycki, S. Sheffield, and X. Sun. Equivalence of Liouville measure and Gaussian free field. ArXiv e-prints, October 2014.

5.

[5] Jérémie Bettinelli and Grégory Miermont. Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields, 167(3–4):555–614, 2017.[5] Jérémie Bettinelli and Grégory Miermont. Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields, 167(3–4):555–614, 2017.

6.

[6] Nicolas Curien. A glimpse of the conformal structure of random planar maps. Comm. Math. Phys., 333(3):1417–1463, 2015. 1356.60165 10.1007/s00220-014-2196-5[6] Nicolas Curien. A glimpse of the conformal structure of random planar maps. Comm. Math. Phys., 333(3):1417–1463, 2015. 1356.60165 10.1007/s00220-014-2196-5

7.

[7] Nicolas Curien and Jean-François Le Gall. The Brownian plane. J. Theoret. Probab., 27(4):1249–1291, 2014.[7] Nicolas Curien and Jean-François Le Gall. The Brownian plane. J. Theoret. Probab., 27(4):1249–1291, 2014.

8.

[8] Julien Dubédat. Duality of Schramm-Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4), 42(5):697–724, 2009.[8] Julien Dubédat. Duality of Schramm-Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4), 42(5):697–724, 2009.

9.

[9] B. Duplantier, J. Miller, and S. Sheffield. Liouville quantum gravity as a mating of trees. ArXiv e-prints, September 2014.[9] B. Duplantier, J. Miller, and S. Sheffield. Liouville quantum gravity as a mating of trees. ArXiv e-prints, September 2014.

10.

[10] Bertrand Duplantier and Scott Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011. MR2819163 1226.81241 10.1007/s00222-010-0308-1[10] Bertrand Duplantier and Scott Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011. MR2819163 1226.81241 10.1007/s00222-010-0308-1

11.

[11] E. Gwynne and J. Miller. Convergence of the self-avoiding walk on random quadrangulations to SLE$_{8/3}$ on $\sqrt{8/3} $-Liouville quantum gravity. ArXiv e-prints, August 2016.[11] E. Gwynne and J. Miller. Convergence of the self-avoiding walk on random quadrangulations to SLE$_{8/3}$ on $\sqrt{8/3} $-Liouville quantum gravity. ArXiv e-prints, August 2016.

12.

[12] E. Gwynne and J. Miller. Characterizations of SLE$_{\kappa }$ for $\kappa \in (4,8)$ on Liouville quantum gravity. ArXiv e-prints, January 2017.[12] E. Gwynne and J. Miller. Characterizations of SLE$_{\kappa }$ for $\kappa \in (4,8)$ on Liouville quantum gravity. ArXiv e-prints, January 2017.

13.

[13] E. Gwynne and J. Miller. Convergence of percolation on uniform quadrangulations with boundary to SLE$_{6}$ on $\sqrt{8/3} $-Liouville quantum gravity. ArXiv e-prints, January 2017.[13] E. Gwynne and J. Miller. Convergence of percolation on uniform quadrangulations with boundary to SLE$_{6}$ on $\sqrt{8/3} $-Liouville quantum gravity. ArXiv e-prints, January 2017.

14.

[14] E. Gwynne and J. Miller. Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk. Annales de l’Institut Henri Poincaré, to appear, 2017.[14] E. Gwynne and J. Miller. Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk. Annales de l’Institut Henri Poincaré, to appear, 2017.

15.

[15] Ewain Gwynne and Jason Miller. Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology. Electron. J. Probab., 22:1–47, 2017. 1378.60030[15] Ewain Gwynne and Jason Miller. Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology. Electron. J. Probab., 22:1–47, 2017. 1378.60030

16.

[16] Ewain Gwynne, Nina Holden, Jason Miller, and Xin Sun. Brownian motion correlation in the peanosphere for $\kappa >8$. Ann. Inst. Henri Poincaré Probab. Stat., 53(4):1866–1889, 2017. 1388.60143 10.1214/16-AIHP774 euclid.aihp/1511773729[16] Ewain Gwynne, Nina Holden, Jason Miller, and Xin Sun. Brownian motion correlation in the peanosphere for $\kappa >8$. Ann. Inst. Henri Poincaré Probab. Stat., 53(4):1866–1889, 2017. 1388.60143 10.1214/16-AIHP774 euclid.aihp/1511773729

17.

[17] Y. Huang, R. Rhodes, and V. Vargas. Liouville Quantum Gravity on the unit disk. ArXiv e-prints, February 2015.[17] Y. Huang, R. Rhodes, and V. Vargas. Liouville Quantum Gravity on the unit disk. ArXiv e-prints, February 2015.

18.

[18] Jean-Pierre Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985. 0596.60041[18] Jean-Pierre Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985. 0596.60041

19.

[19] R. Kenyon, J. Miller, S. Sheffield, and D. B. Wilson. Bipolar orientations on planar maps and SLE$_{12}$. ArXiv e-prints, November 2015.[19] R. Kenyon, J. Miller, S. Sheffield, and D. B. Wilson. Bipolar orientations on planar maps and SLE$_{12}$. ArXiv e-prints, November 2015.

20.

[20] Gregory F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.[20] Gregory F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.

21.

[21] Jean-François Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab., 41(4):2880–2960, 2013. 1282.60014 10.1214/12-AOP792 euclid.aop/1372859769[21] Jean-François Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab., 41(4):2880–2960, 2013. 1282.60014 10.1214/12-AOP792 euclid.aop/1372859769

22.

[22] Y. Li, X. Sun, and S. S. Watson. Schnyder woods, SLE(16), and Liouville quantum gravity. ArXiv e-prints, May 2017.[22] Y. Li, X. Sun, and S. S. Watson. Schnyder woods, SLE(16), and Liouville quantum gravity. ArXiv e-prints, May 2017.

23.

[23] Grégory Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math., 210(2):319–401, 2013.[23] Grégory Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math., 210(2):319–401, 2013.

24.

[24] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric. ArXiv e-prints, July 2015.[24] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric. ArXiv e-prints, July 2015.

25.

[25] J. Miller and S. Sheffield. Liouville quantum gravity spheres as matings of finite-diameter trees. ArXiv e-prints, June 2015.[25] J. Miller and S. Sheffield. Liouville quantum gravity spheres as matings of finite-diameter trees. ArXiv e-prints, June 2015.

26.

[26] J. Miller and S. Sheffield. Imaginary geometry III: reversibility of SLE$_\kappa $ for $\kappa \in (4,8)$. Annals of Mathematics, 184(2):455–486, 2016.[26] J. Miller and S. Sheffield. Imaginary geometry III: reversibility of SLE$_\kappa $ for $\kappa \in (4,8)$. Annals of Mathematics, 184(2):455–486, 2016.

27.

[27] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. ArXiv e-prints, May 2016.[27] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. ArXiv e-prints, May 2016.

28.

[28] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map III: the conformal structure is determined. ArXiv e-prints, August 2016.[28] J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map III: the conformal structure is determined. ArXiv e-prints, August 2016.

29.

[29] Jason Miller and Scott Sheffield. Imaginary geometry I: interacting SLEs. Probab. Theory Related Fields, 164(3–4):553–705, 2016. 1336.60162 10.1007/s00440-016-0698-0[29] Jason Miller and Scott Sheffield. Imaginary geometry I: interacting SLEs. Probab. Theory Related Fields, 164(3–4):553–705, 2016. 1336.60162 10.1007/s00440-016-0698-0

30.

[30] Jason Miller and Scott Sheffield. Imaginary geometry II: Reversibility of $\operatorname{SLE} _{\kappa }(\rho _{1};\rho _{2})$ for $\kappa \in (0,4)$. Ann. Probab., 44(3):1647–1722, 2016. 1344.60078 10.1214/14-AOP943 euclid.aop/1463410030[30] Jason Miller and Scott Sheffield. Imaginary geometry II: Reversibility of $\operatorname{SLE} _{\kappa }(\rho _{1};\rho _{2})$ for $\kappa \in (0,4)$. Ann. Probab., 44(3):1647–1722, 2016. 1344.60078 10.1214/14-AOP943 euclid.aop/1463410030

31.

[31] Jason Miller and Scott Sheffield. Quantum Loewner evolution. Duke Math. J., 165(17):3241–3378, 2016. 1364.82023 10.1215/00127094-3627096 euclid.dmj/1477327539[31] Jason Miller and Scott Sheffield. Quantum Loewner evolution. Duke Math. J., 165(17):3241–3378, 2016. 1364.82023 10.1215/00127094-3627096 euclid.dmj/1477327539

32.

[32] Jason Miller and Scott Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Related Fields, 169(3-4):729–869, 2017. 1378.60108 10.1007/s00440-017-0780-2[32] Jason Miller and Scott Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Related Fields, 169(3-4):729–869, 2017. 1378.60108 10.1007/s00440-017-0780-2

33.

[33] Rémi Rhodes and Vincent Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11:315–392, 2014. 1316.60073 10.1214/13-PS218[33] Rémi Rhodes and Vincent Vargas. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11:315–392, 2014. 1316.60073 10.1214/13-PS218

34.

[34] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000. 0968.60093 10.1007/BF02803524[34] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000. 0968.60093 10.1007/BF02803524

35.

[35] Oded Schramm and Scott Sheffield. A contour line of the continuum Gaussian free field. Probab. Theory Related Fields, 157(1–2):47–80, 2013. 1331.60090 10.1007/s00440-012-0449-9[35] Oded Schramm and Scott Sheffield. A contour line of the continuum Gaussian free field. Probab. Theory Related Fields, 157(1–2):47–80, 2013. 1331.60090 10.1007/s00440-012-0449-9

36.

[36] Scott Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3–4):521–541, 2007. MR2322706 1132.60072 10.1007/s00440-006-0050-1[36] Scott Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3–4):521–541, 2007. MR2322706 1132.60072 10.1007/s00440-006-0050-1

37.

[37] Scott Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79–129, 2009. 1170.60008 10.1215/00127094-2009-007 euclid.dmj/1235657189[37] Scott Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79–129, 2009. 1170.60008 10.1215/00127094-2009-007 euclid.dmj/1235657189

38.

[38] Scott Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab., 44(5):3474–3545, 2016. 1388.60144 10.1214/15-AOP1055 euclid.aop/1474462104[38] Scott Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab., 44(5):3474–3545, 2016. 1388.60144 10.1214/15-AOP1055 euclid.aop/1474462104

39.

[39] Scott Sheffield. Quantum gravity and inventory accumulation. Ann. Probab., 44(6):3804–3848, 2016. 1359.60120 10.1214/15-AOP1061 euclid.aop/1479114263[39] Scott Sheffield. Quantum gravity and inventory accumulation. Ann. Probab., 44(6):3804–3848, 2016. 1359.60120 10.1214/15-AOP1061 euclid.aop/1479114263

40.

[40] Dapeng Zhan. Duality of chordal SLE. Invent. Math., 174(2):309–353, 2008. 1158.60047 10.1007/s00222-008-0132-z[40] Dapeng Zhan. Duality of chordal SLE. Invent. Math., 174(2):309–353, 2008. 1158.60047 10.1007/s00222-008-0132-z

41.

[41] Dapeng Zhan. Duality of chordal SLE, II. Ann. Inst. Henri Poincaré Probab. Stat., 46(3):740–759, 2010. 1200.60071 10.1214/09-AIHP340 euclid.aihp/1281100397[41] Dapeng Zhan. Duality of chordal SLE, II. Ann. Inst. Henri Poincaré Probab. Stat., 46(3):740–759, 2010. 1200.60071 10.1214/09-AIHP340 euclid.aihp/1281100397
Ewain Gwynne and Jason Miller "Chordal SLE$_6$ explorations of a quantum disk," Electronic Journal of Probability 23(none), 1-24, (2018). https://doi.org/10.1214/18-EJP161
Received: 31 January 2017; Accepted: 22 March 2018; Published: 2018
Vol.23 • 2018
Back to Top