Abstract
Let $W$ be a one-dimensional Brownian motion starting from 0. Define $Y(t)= \int_0^t{ds \over W(s)}:= \lim_{\epsilon\to 0} \int_0^t 1_{(|W(s)|> \epsilon)} {ds\over W(s)}$ as Cauchy's principal value related to local time. We prove limsup and liminf results for the increments of $Y$.
Citation
Endre Csaki. Yueyun Hu. "On the Increments of the Principal Value of Brownian Local Time." Electron. J. Probab. 10 925 - 947, 2005. https://doi.org/10.1214/EJP.v10-269
Information