

Vol. 10 (2005), Paper no. 27, pages 925-947.

Journal URL
http://www.math.washington.edu/~ejpecp/

On the Increments of the Principal Value of Brownian Local Time

Endre Csáki ${ }^{1}$
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1364 Budapest, P.O.B. 127, Hungary
csaki@renyi.hu and
\section*{Yueyun Hu}
Département de Mathématiques, Institut Galilée (L.A.G.A. UMR 7539) Paris XIII, 99 Avenue J-B Clément, 93430 Villetaneuse, France
yueyun@math.univ-paris13.fr

Abstract

Let W be a one-dimensional Brownian motion starting from 0 . Define $Y(t)=$ $\int_{0}^{t} \frac{d s}{W(s)}:=\lim _{\epsilon \rightarrow 0} \int_{0}^{t} 1_{(|W(s)|>\epsilon)} \frac{d s}{W(s)}$ as Cauchy's principal value related to local time. We prove limsup and liminf results for the increments of Y.

Keywords: Brownian motion, local time, principal value, large increments.
AMS 2000 Subject Classification: 60J65 60J55 60F15
Submitted to EJP on January 10, 2005. Final version accepted on June 1, 2005.

[^0]
1. Introduction

Let $\{W(t) ; t \geq 0\}$ be a one-dimensional standard Brownian motion with $W(0)=0$, and let $\{L(t, x) ; t \geq 0, x \in \mathbb{R}\}$ denote its jointly continuous local time process. That is, for any Borel function $f \geq 0$,

$$
\int_{0}^{t} f(W(s)) \mathrm{d} s=\int_{-\infty}^{\infty} f(x) L(t, x) \mathrm{d} x, \quad t \geq 0
$$

We are interested in the process

$$
\begin{equation*}
Y(t):=\int_{0}^{t} \frac{\mathrm{~d} s}{W(s)}, \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

Rigorously speaking, the integral $\int_{0}^{t} \mathrm{~d} s / W(s)$ should be considered in the sense of Cauchy's principal value, i.e., $Y(t)$ is defined by

$$
\begin{equation*}
Y(t):=\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{t} \frac{\mathrm{~d} s}{W(s)} \mathbb{1}_{\{|W(s)| \geq \varepsilon\}}=\int_{0}^{\infty} \frac{L(t, x)-L(t,-x)}{x} \mathrm{~d} x . \tag{1.2}
\end{equation*}
$$

Since $x \mapsto L(t, x)$ is Hölder continuous of order ν, for any $\nu<1 / 2$, the integral on the extreme right in (1.2) is almost surely absolutely convergent for all $t>0$. The process $\{Y(t), t \geq 0\}$ is called the principal value of Brownian local time.

It is easily seen that $Y(\cdot)$ inherits a scaling property from Brownian motion, namely, for any fixed $a>0, t \mapsto a^{-1 / 2} Y(a t)$ has the same law as $t \mapsto Y(t)$. Although some properties distinguish $Y(\cdot)$ from Brownian motion (in particular, $Y(\cdot)$ is not a semimartingale), it is a kind of folklore that the asymptotic behaviors of Y are somewhat like that of a Brownian motion. For detailed studies and surveys on principal value, and relation to Hilbert transform see Biane and Yor [4], Fitzsimmons and Getoor [13], Bertoin [2], [3], Yamada [20], Boufoussi et al. [5], Ait Ouahra and Eddahbi [1], Csáki et al. [11] and a collection of papers [22] together with their references. Biane and Yor [4] presented a detailed study on Y and determined a number of distributions for principal values and related processes.

Concerning almost sure limit theorems for Y and its increments, we summarize the relevant results in the literature. It was shown in [17] that the following law of the iterated logarithm holds:

Theorem A. (Hu and Shi [17])

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{Y(T)}{\sqrt{T \log \log T}}=\sqrt{8}, \quad \text { a.s. } \tag{1.3}
\end{equation*}
$$

This was extended in [10] to a Strassen-type [18] functional law of the iterated logarithm.

Theorem B. (Csáki et al. [10]) With probability one the set

$$
\begin{equation*}
\left\{\frac{Y(x T)}{\sqrt{8 T \log \log T}}, 0 \leq x \leq 1\right\}_{T \geq 3} \tag{1.4}
\end{equation*}
$$

is relatively compact in $C[0,1]$ with limit set equal to

$$
\begin{equation*}
\mathcal{S}:=\left\{f \in C[0,1]: f(0)=0, f \text { is absolutely continuous and } \int_{0}^{1}\left(f^{\prime}(x)\right)^{2} \mathrm{~d} x \leq 1\right\} . \tag{1.5}
\end{equation*}
$$

Concerning Chung-type law of the iterated logarithm, we have the following result:
Theorem C. (Hu [16])

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \sqrt{\frac{\log \log T}{T}} \sup _{0 \leq s \leq T}|Y(s)|=K_{1}, \quad \text { a.s. } \tag{1.6}
\end{equation*}
$$

with some (unknown) constant $K_{1}>0$.
The large increments were studied in [7] and [8]:
Theorem D. (Csáki et al. [7]) Under the conditions

$$
\left\{\begin{array}{l}
0<a_{T} \leq T \tag{1.7}\\
T \mapsto a_{T} \text { and } T \mapsto T / a_{T} \text { are both non-decreasing, } \\
\lim _{T \rightarrow \infty} \frac{\log \left(T / a_{T}\right)}{\log \log T}=\infty
\end{array}\right.
$$

we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{a_{T} \log \left(T / a_{T}\right)}}=2, \quad \text { a.s. } \tag{1.8}
\end{equation*}
$$

Wen [19] studied the lag increments of Y and among others proved the following results.
Theorem E. (Wen [19])

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \sup _{0 \leq t \leq T} \frac{\sup _{t \leq s \leq T}|Y(s)-Y(s-t)|}{\sqrt{t(\log (T / t)+2 \log \log t)}}=2, \quad \text { a.s. } \tag{1.9}
\end{equation*}
$$

Under the conditions $0<a_{T} \leq T, a_{T} \rightarrow \infty$ as $T \rightarrow \infty$, we have

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \sup _{0 \leq t \leq T-a_{T}} \frac{\sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{a_{T}\left(\log \left(\left(t+a_{T}\right) / a_{T}\right)+2 \log \log a_{T}\right)}} \leq 2 \text {, } \quad \text { a.s. } \tag{1.10}
\end{equation*}
$$

If a_{T} is onto, then we have equality in (1.10).

In this note our aim is to investigate further limsup and liminf behaviors of the increments of Y.

Theorem 1.1. Assume that $T \mapsto a_{T}$ is a function such that $0<a_{T} \leq T$, and both a_{T} and T / a_{T} are non-decreasing. Then
(i)

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{a_{T}\left(\log \sqrt{T / a_{T}}+\log \log T\right)}}=\sqrt{8}, \quad \text { a.s. } \tag{1.11}
\end{equation*}
$$

(iia) If $a_{T}>T(\log T)^{-\alpha}$ for some $\alpha<2$, then

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \sqrt{\frac{\log \log T}{a_{T}}} \sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|=K_{2}, \quad \text { a.s. } \tag{1.12}
\end{equation*}
$$

(iib) If $a_{T} \leq T(\log T)^{-\alpha}$ for some $\alpha>2$, then

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{a_{T} \log \left(T / a_{T}\right)}}=K_{3}, \quad \text { a.s. } \tag{1.13}
\end{equation*}
$$

with some positive constants K_{2}, K_{3}. If, moreover,

$$
\lim _{T \rightarrow \infty} \frac{\log \left(T / a_{T}\right)}{\log \log T}=\infty
$$

then $K_{3}=2$.
Theorem 1.2. Assume that $T \mapsto a_{T}$ is a function such that $0<a_{T} \leq T$, and both a_{T} and T / a_{T} are non-decreasing. Then

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\sqrt{T \log \log T}}{a_{T}} \inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|=K_{4}, \quad \text { a.s. } \tag{i}
\end{equation*}
$$

with some positive constant K_{4}. If $\lim _{T \rightarrow \infty}\left(a_{T} / T\right)=0$, then $K_{4}=1 / \sqrt{2}$.
(iia) If $0<\lim _{T \rightarrow \infty}\left(a_{T} / T\right)=\rho \leq 1$, then

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{T \log \log T}}=\rho \sqrt{8}, \quad \text { a.s. } \tag{1.15}
\end{equation*}
$$

(iib) If

$$
\lim _{T \rightarrow \infty} \frac{a_{T}(\log \log T)^{2}}{T}=0
$$

then

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\sqrt{T}}{a_{T} \sqrt{\log \log T}} \inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|=K_{5} \tag{1.16}
\end{equation*}
$$

with some positive constant K_{5}.

Remark 1. The exact values of the constants $K_{i}, i=2,3,4,5$ are unknown in general and it seems difficult to determine them except in certain particular cases. In the proofs we establish different upper and lower bounds. It follows however by 0-1 law for Brownian motion that the limsup's and liminf's considered here are non-random constants.

Remark 2. Plainly we recover some previous results on the path properties of Y by considering particular cases of Theorems 1.1 and 1.2. For instance, Theorems A and C follow from (1.11) and (1.12) respectively by taking $a_{T}=T$, and (1.8) follows from (1.11) combining with (1.13). However in Theorem 1.1(ii) and Theorem 1.2(ii) there are still small gaps in a_{T}.

The organization of the paper is as follows: In Section 2 some facts are presented needed in the proofs. Section 3 contains the necessary probability estimates. Theorem 1.1(i) and Theorem 1.1(iia,b) are proved in Sections 4 and 5, resp., while Theorem 1.2(i) and Theorem 1.2(iia,b) are proved in Sections 6 and 7, resp.

Throughout the paper, the letter K with subscripts will denote some important but unknown finite positive constants, while the letter c with subscripts denotes some finite and positive universal constants not important in our investigations. When the constants depend on a parameter, say δ, they are denoted by $c(\delta)$ with subscripts.

2. Facts

Let $\{W(t), t \geq 0\}$ be a standard Brownian motion and define the following objects:

$$
\begin{align*}
g & :=\sup \{t: t \leq 1, W(t)=0\} \tag{2.1}\\
B(s) & :=\frac{W(s g)}{\sqrt{g}}, \quad 0 \leq s \leq 1, \tag{2.2}\\
m(s) & :=\frac{|W(g+s(1-g))|}{\sqrt{1-g}}, \quad 0 \leq s \leq 1 . \tag{2.3}
\end{align*}
$$

Here we summarize some well-known facts needed in our proofs.
Fact 2.1. (Biane and Yor [4])

$$
\begin{equation*}
\frac{\mathbb{P}(Y(1) \in \mathrm{d} x)}{\mathrm{d} x}=\sqrt{\frac{2}{\pi^{3}}} \sum_{k=0}^{\infty}(-1)^{k} \exp \left(-\frac{(2 k+1)^{2} x^{2}}{8}\right), \quad x \in \mathbb{R} . \tag{2.4}
\end{equation*}
$$

Consequently we have the estimate: for $\delta>0$

$$
\begin{gather*}
c_{1} \exp \left(-\frac{z^{2}}{8(1-\delta)}\right) \leq \mathbb{P}(Y(1) \geq z) \leq \exp \left(-\frac{z^{2}}{8}\right), \quad z \geq 1 \tag{2.5}\\
-929-
\end{gather*}
$$

with some positive constant $c_{1}=c_{1}(\delta)$. Moreover, $g,\{B(s), 0 \leq s \leq 1\}$ and $\{m(s), 0 \leq s \leq 1\}$ are independent, g has arcsine distribution, B is a Brownian bridge and m is a Brownian meander.

$$
\begin{align*}
& \mathbb{P}\left(\left.\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)}<z \right\rvert\, m(1)=0\right) \\
& =\sum_{k=-\infty}^{\infty}\left(1-k^{2} z^{2}\right) \exp \left(-\frac{k^{2} z^{2}}{2}\right)=\frac{8 \pi^{2} \sqrt{2 \pi}}{z^{3}} \sum_{k=1}^{\infty} \exp \left(-\frac{2 k^{2} \pi^{2}}{z^{2}}\right), \quad z>0 . \tag{2.6}\\
& \mathbb{P}(m(1)>x)=e^{-x^{2} / 2}, \quad x>0 . \tag{2.7}
\end{align*}
$$

Fact 2.2. (Yor [21, Exercise 3.4 and pp. 44]) Let $Q_{x \rightarrow 0}^{\delta}$ be the law of the square of a Bessel bridge from x to 0 of dimension $\delta>0$ during time interval $[0,1]$. The process $\left(m^{2}(1-v), 0 \leq v \leq 1\right)$ conditioned on $\left\{m^{2}(1)=x\right\}$ is distributed as $Q_{x \rightarrow 0}^{3}$. Furthermore, we have

$$
\begin{equation*}
Q_{x \rightarrow 0}^{\delta}=Q_{0 \rightarrow 0}^{\delta} * Q_{x \rightarrow 0}^{0}, \quad \forall \delta>0, x>0 \tag{2.8}
\end{equation*}
$$

where $*$ denotes convolution operator. Consequently, for any $x>0$

$$
\begin{equation*}
\mathbb{P}\left(\left.\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)}<z \right\rvert\, m(1)=x\right) \geq \mathbb{P}\left(\left.\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)}<z \right\rvert\, m(1)=0\right) . \tag{2.9}
\end{equation*}
$$

Fact 2.3. (Hu [16]) For $0<z \leq 1$

$$
\begin{equation*}
c_{2} \exp \left(-\frac{c_{3}}{z^{2}}\right) \leq \mathbb{P}\left(\sup _{0 \leq s \leq 1}|Y(s)|<z\right) \leq c_{4} \exp \left(-\frac{c_{5}}{z^{2}}\right) \tag{2.10}
\end{equation*}
$$

with some positive constants $c_{2}, c_{3}, c_{4}, c_{5}$.
Fact 2.4. (Csörgő and Révész [12]) Assume that $T \mapsto a_{T}$ is a function such that $0<a_{T} \leq T$, and both a_{T} and T / a_{T} are non-decreasing. Then

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|W(t+s)-W(t)|}{\sqrt{a_{T}\left(\log \left(T / a_{T}\right)+\log \log T\right)}}=\sqrt{2}, \quad \text { a.s. } \tag{2.11}
\end{equation*}
$$

Fact 2.5. (Strassen [18]) If $f \in \mathcal{S}$ defined by (1.5), then for any partition $x_{0}=0<x_{1}<\ldots<$ $x_{k}<x_{k+1}=1$ we have

$$
\begin{equation*}
\sum_{i=1}^{k+1} \frac{\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}}{x_{i}-x_{i-1}} \leq 1 \tag{2.12}
\end{equation*}
$$

Fact 2.6. (Chung [6])

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \sqrt{\frac{\log \log t}{t}} \sup _{0 \leq s \leq t}|W(s)|=\frac{\pi}{\sqrt{8}}, \quad \text { a.s. } \tag{2.13}
\end{equation*}
$$

Define $g(T):=\max \{s \leq T: W(s)=0\}$. A joint lower class result for $g(T)$ and $M(T):=$ $\sup _{0 \leq s \leq T}|W(s)|$ reads as follows.

Fact 2.7. (Grill [15]) Let $\beta(t), \gamma(t)$ be positive functions slowly varying at infinity, such that $0<\beta(t) \leq 1,0<\gamma(t) \leq 1, \beta(t)$ is non-increasing, $\beta(t) \sqrt{t} \uparrow \infty, \gamma(t)$ is monotone, $\gamma(t) t \uparrow \infty$, $\gamma(t) / \beta^{2}(t)$ is monotone. Then

$$
\mathbb{P}(M(T) \leq \beta(T) \sqrt{T}, g(T) \leq \gamma(T) T \quad \text { i.o. })=0 \quad \text { or } \quad 1
$$

according as $I(\beta, \gamma)<\infty$ or $=\infty$, where

$$
I(\beta, \gamma)=\int_{1}^{\infty} \frac{1}{t \beta^{2}(t)}\left(1+\frac{\beta^{2}(t)}{\gamma(t)}\right)^{-1 / 2} \exp \left(-\frac{(4-3 \gamma(t)) \pi^{2}}{8 \beta^{2}(t)}\right) \mathrm{d} t
$$

Now define $d(T):=\min \{s \geq T: W(s)=0\}$. Since $\{d(T)>t\}=\{g(t)<T\}$, we deduce from Fact 2.7 the following estimate on $d(T)$ when $T \rightarrow \infty$.

Fact 2.8. With probability 1

$$
d(T)=O\left(T(\log T)^{3}\right), \quad T \rightarrow \infty
$$

3. Probability estimates

Lemma 3.1. For $T \geq 1, \delta, z>0$ we have

$$
\begin{align*}
& \mathbb{P}\left(\sup _{0 \leq t \leq T-1} \sup _{0 \leq s \leq 1}|Y(t+s)-Y(t)|>z\right) \\
& \quad \leq c_{6}\left(\sqrt{T} \exp \left(-\frac{z^{2}}{8(1+\delta)}\right)+T \exp \left(-\frac{z^{2}}{2(1+\delta)}\right)\right) \tag{3.1}
\end{align*}
$$

with some positive constant $c_{6}=c_{6}(\delta)$.

For the proof see Csáki et al. [7], Lemma 2.8.

Lemma 3.2. For $T>1,0<\delta<1 / 2, z>1$ we have

$$
\begin{align*}
& \mathbb{P}\left(\sup _{0 \leq t \leq T-1}(Y(t+1)-Y(t)) \geq z\right) \\
& \quad \geq \min \left(\frac{1}{2}, \frac{c_{7} \sqrt{T-1}}{z} \exp \left(-\frac{z^{2}}{8(1-\delta)}\right)\right)-\exp \left(-z^{2}\right) \tag{3.2}
\end{align*}
$$

with some positive constant $c_{7}=c_{7}(\delta)>0$.
Proof. Let us construct an increasing sequence of stopping times by $\eta_{0}:=0$ and

$$
\begin{aligned}
\eta_{k+1}:=\inf \left\{t>\eta_{k}+1:\right. & W(t)=0\}, \quad k=0,1,2, \ldots \\
& -931-
\end{aligned}
$$

Let

$$
\begin{aligned}
& \nu_{t}:=\min \left\{i \geq 1: \eta_{i}>t\right\} \\
& Z_{i}:=Y\left(\eta_{i-1}+1\right)-Y\left(\eta_{i-1}\right), \quad i=1,2, \ldots
\end{aligned}
$$

Then $\left(Z_{i}, \eta_{i}-\eta_{i-1}\right)_{i \geq 1}$ are i.i.d. random vectors with

$$
\eta_{i}-\eta_{i-1} \stackrel{\text { law }}{=} 1+\tau^{2}, \quad Z_{i} \stackrel{\text { law }}{=} Y(1),
$$

where τ has Cauchy distribution. Clearly, for $t>0$,

$$
\sup _{0 \leq s \leq t}(Y(s+1)-Y(s)) \geq \max _{1 \leq i \leq \nu_{t}} Z_{i}=\bar{Z}_{\nu_{t}}
$$

with $\bar{Z}_{k}:=\max _{1 \leq i \leq k} Z_{i}$. First consider the Laplace transform $(\lambda>0)$:

$$
\begin{aligned}
& \lambda \int_{0}^{\infty} e^{-\lambda u} \mathbb{P}\left(\bar{Z}_{\nu_{u}}<z\right) \mathrm{d} u \\
& =\lambda \sum_{k=1}^{\infty} \mathbb{E} \int_{0}^{\infty} e^{-\lambda u} 1_{\left\{\eta_{k-1} \leq u<\eta_{k}\right\}} 1_{\left\{\bar{Z}_{k}<z\right\}} \mathrm{d} u \\
& =\sum_{k=1}^{\infty} \mathbb{E}\left(\left[e^{-\lambda \eta_{k-1}}-e^{-\lambda \eta_{k}}\right] 1_{\left\{\bar{Z}_{k}<z\right\}}\right) \\
& =\sum_{k=1}^{\infty}\left(\mathbb{E}\left[1_{\left\{\bar{Z}_{k}<z\right\}} e^{-\lambda \eta_{k-1}}\right]-\mathbb{E}\left[1_{\left\{\bar{Z}_{k}<z\right\}} e^{-\lambda \eta_{k}}\right]\right) \\
& =\sum_{k=1}^{\infty}\left(\mathbb{E}\left[1_{\left\{\bar{Z}_{k-1}<z\right\}} e^{-\lambda \eta_{k-1}}\right]-\mathbb{E}\left[1_{\left\{\bar{Z}_{k-1}<z, Z_{k} \geq z\right\}} e^{-\lambda \eta_{k-1}}\right]-\mathbb{E}\left[1_{\left\{\bar{Z}_{k}<z\right\}} e^{-\lambda \eta_{k}}\right]\right) \\
& =1-\sum_{k=1}^{\infty} \mathbb{E}\left[1_{\left\{\bar{Z}_{k-1}<z, Z_{k} \geq z\right\}} e^{-\lambda \eta_{k-1}}\right] \\
& =1-\sum_{k=1}^{\infty} \mathbb{E}\left[1_{\left\{\bar{Z}_{k-1}<z\right\}} e^{-\lambda \eta_{k-1}}\right] \mathbb{P}(Y(1) \geq z) \\
& =1-\sum_{k=1}^{\infty}\left(\mathbb{E}\left[1_{\left\{Z_{1}<z\right\}} e^{-\lambda \eta_{1}}\right]\right)^{k-1} \mathbb{P}(Y(1) \geq z) \\
& =1-\frac{\mathbb{P}(Y(1) \geq z)}{1-\mathbb{E}\left[1_{\left\{Z_{1}<z\right\}} e^{-\lambda \eta_{1}}\right]},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\lambda \int_{0}^{\infty} e^{-\lambda u} \mathbb{P}\left(\bar{Z}_{\nu_{u}} \geq z\right) \mathrm{d} u=\frac{\mathbb{P}(Y(1) \geq z)}{1-\mathbb{E}\left[1_{\left\{Z_{1}<z\right\}} e^{-\lambda \eta_{1}}\right]} . \tag{3.3}
\end{equation*}
$$

But (recalling that $Z_{1}=Y(1)$)

$$
\begin{aligned}
1-\mathbb{E}\left[1_{\left\{Z_{1}<z\right\}} e^{-\lambda \eta_{1}}\right] & \leq 1-\mathbb{E}\left(e^{-\lambda \eta_{1}}\right)+\mathbb{P}(Y(1) \geq z) \\
& -932-
\end{aligned}
$$

and (cf. [14], 3.466/1)

$$
1-\mathbb{E} e^{-\lambda \eta_{1}}=1-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{-\lambda\left(1+x^{2}\right)}}{1+x^{2}} \mathrm{~d} x=\frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{\lambda}} e^{-x^{2}} \mathrm{~d} x \leq 2 \sqrt{\lambda}
$$

hence

$$
\lambda \int_{0}^{\infty} e^{-\lambda u} \mathbb{P}\left(\bar{Z}_{\nu_{u}} \geq z\right) \mathrm{d} u \geq \frac{\mathbb{P}(Y(1) \geq z)}{2 \sqrt{\lambda}+\mathbb{P}(Y(1) \geq z)}
$$

On the other hand, for any $u_{0}>0$ we have

$$
\begin{aligned}
\lambda \int_{0}^{\infty} e^{-\lambda u} \mathbb{P}\left(\bar{Z}_{\nu_{u}} \geq z\right) \mathrm{d} u & =\lambda \int_{0}^{u_{0}} e^{-\lambda u} \mathbb{P}\left(\bar{Z}_{\nu_{u}} \geq z\right) \mathrm{d} u+\lambda \int_{u_{0}}^{\infty} e^{-\lambda u} \mathbb{P}\left(\bar{Z}_{\nu_{u}} \geq z\right) \mathrm{d} u \\
& \leq \mathbb{P}\left(\bar{Z}_{\nu_{u_{0}}} \geq z\right)+e^{-\lambda u_{0}}
\end{aligned}
$$

It turns out that

$$
\begin{equation*}
\mathbb{P}\left(\bar{Z}_{\nu_{u_{0}}} \geq z\right) \geq \frac{\mathbb{P}(Y(1) \geq z)}{2 \sqrt{\lambda}+\mathbb{P}(Y(1) \geq z)}-e^{-\lambda u_{0}} \geq \min \left(\frac{1}{2}, \frac{\mathbb{P}(Y(1) \geq z)}{4 \sqrt{\lambda}}\right)-e^{-\lambda u_{0}} \tag{3.4}
\end{equation*}
$$

where the inequality

$$
\frac{x}{y+x} \geq \min \left(\frac{1}{2}, \frac{x}{2 y}\right), \quad x>0, y>0
$$

was used. Choosing $u_{0}=T-1, \lambda=z^{2} / u_{0}$, and applying (2.5) of Fact 2.1, we finally get

$$
\begin{align*}
& \mathbb{P}\left(\sup _{0 \leq t \leq T-1}(Y(t+1)-Y(t)) \geq z\right) \tag{3.5}\\
& \quad \geq \min \left(\frac{1}{2}, \frac{c_{8}(\delta) \sqrt{T-1}}{z} \exp \left(-\frac{z^{2}}{8(1-\delta)}\right)\right)-\exp \left(-z^{2}\right) .
\end{align*}
$$

This proves Lemma 3.2.

Lemma 3.3. For $T \geq 2,0 \leq \kappa<1$ and $\delta, z>0$ we have

$$
\begin{equation*}
\mathbb{P}\left(\sup _{0 \leq t \leq T-1}(Y(t+1)-Y(t))<z\right) \leq \frac{5}{T^{\kappa / 2}}+\exp \left(-c_{9} T^{(1-\kappa) / 2} e^{-(1+\delta) z^{2} / 8}\right) \tag{3.6}
\end{equation*}
$$

with some positive constant $c_{9}=c_{9}(\delta)$.

See Csáki et al. [7], Lemma 3.1.
Lemma 3.4. For $T \geq 1,0<z \leq 1 / 2$ we have

$$
\begin{gather*}
\mathbb{P}\left(\sup _{0 \leq t \leq T-1} \sup _{0 \leq s \leq 1}|Y(t+s)-Y(t)|<z\right) \geq \frac{c_{10}}{\sqrt{T}} \exp \left(-\frac{c_{11}}{z^{2}}\right) \tag{3.7}\\
-933-
\end{gather*}
$$

with some positive constants c_{10}, c_{11}.

Proof. Define the events

$$
A:=\left\{\sup _{0 \leq s \leq 1}|Y(s)|<\frac{z}{4}, W(1) \geq \frac{4}{z}, \inf _{1 \leq u \leq T} W(u) \geq \frac{2}{z}\right\}
$$

and

$$
\widetilde{A}:=\left\{\sup _{0 \leq t \leq T-1} \sup _{0 \leq s \leq 1}|Y(t+s)-Y(t)|<z\right\} .
$$

Then $A \subset \widetilde{A}$, since if A occurs and $t<1, t+s \leq 1$, then

$$
|Y(t+s)-Y(t)| \leq 2 \sup _{0 \leq s \leq 1}|Y(s)| \leq \frac{z}{2}<z
$$

If A occurs and $t<1, s \leq 1,1<t+s \leq T$, then

$$
|Y(t+s)-Y(t)| \leq Y(t+s)-Y(1)+|Y(t)-Y(1)| \leq \int_{1}^{t+s} \frac{\mathrm{~d} u}{W(u)}+\frac{z}{2}<z
$$

Moreover, if A occurs and $1 \leq t, s \leq 1, t+s \leq T$, then

$$
|Y(t+s)-Y(t)|=\int_{t}^{t+s} \frac{\mathrm{~d} u}{W(u)} \leq \frac{z}{2}<z .
$$

Hence $A \subset \widetilde{A}$ as claimed. But by the Markov property of W,

$$
\begin{equation*}
\mathbb{P}(A)=\int_{4 / z}^{\infty} \mathbb{P}\left(\left.\sup _{0 \leq s \leq 1}|Y(s)|<\frac{z}{4} \right\rvert\, W(1)=x\right) \mathbb{P}\left(\left.\inf _{1 \leq u \leq T} W(u) \geq \frac{2}{z} \right\rvert\, W(1)=x\right) \varphi(x) \mathrm{d} x \tag{3.8}
\end{equation*}
$$

where φ denotes the standard normal density function.
Using reflection principle and $x \geq 4 / z, z \leq 1 / 2$, we get

$$
\begin{align*}
& \mathbb{P}\left(\left.\inf _{1 \leq u \leq T} W(u) \geq \frac{2}{z} \right\rvert\, W(1)=x\right)=2 \Phi\left(\frac{x-2 / z}{\sqrt{T-1}}\right)-1 \tag{3.9}\\
& \geq 2 \Phi\left(\frac{2}{z \sqrt{T-1}}\right)-1 \geq 2 \Phi\left(\frac{4}{\sqrt{T}}\right)-1 \geq \frac{c_{12}}{\sqrt{T}},
\end{align*}
$$

with some constant $c_{12}>0$, where $\Phi(\cdot)$ is the standard normal distribution function. Hence

$$
\begin{equation*}
\mathbb{P}(\widetilde{A}) \geq \mathbb{P}(A) \geq \frac{c_{12}}{\sqrt{T}} \mathbb{P}\left(\sup _{0 \leq s \leq 1}|Y(s)| \leq \frac{z}{4}, W(1) \geq \frac{4}{z}\right) . \tag{3.10}
\end{equation*}
$$

To get a lower bound of the probability on the right-hand side, define $g,(m(v), 0 \leq v \leq 1)$, $(B(u), 0 \leq u \leq 1)$ by (2.1), (2.2) and (2.3), respectively. Recall (see Fact 2.1) that these three objects are independent, g has arc sine distribution, m is a Brownian meander and B is a Brownian
bridge. Moreover, (g, m, B) are independent of $\operatorname{sgn}(W(1))$ which is a Bernoulli variable. Observe that

$$
\begin{aligned}
\sup _{0 \leq s \leq g}|Y(s)| & =\sqrt{g} \sup _{0 \leq s \leq 1}\left|\int_{0}^{s} \frac{\mathrm{~d} u}{B(u)}\right| \\
\sup _{g \leq s \leq 1}|Y(s)| & =|Y(1)-Y(g)|=\sqrt{1-g} \int_{0}^{1} \frac{\mathrm{~d} v}{m(v)}, \\
|W(1)| & =\sqrt{1-g} m(1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{0 \leq s \leq 1}|Y(s)| \leq \frac{z}{4}, W(1) \geq \frac{4}{z}\right) \\
& \geq \mathbb{P}\left(\sup _{0 \leq s \leq g}|Y(s)| \leq \frac{z}{8}, Y(1)-Y(g) \leq \frac{z}{8}, W(1) \geq \frac{4}{z}\right) \\
& \geq \mathbb{P}\left(\sqrt{g} \sup _{0 \leq s \leq 1}\left|\int_{0}^{s} \frac{\mathrm{~d} u}{B(u)}\right| \leq \frac{z}{8}, \sqrt{1-g} \int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8}, \sqrt{1-g} m(1) \geq \frac{4}{z}, W(1)>0, g<z^{2}\right) \\
& \geq \mathbb{P}\left(\sup _{0 \leq s \leq 1}\left|\int_{0}^{s} \frac{\mathrm{~d} u}{B(u)}\right| \leq \frac{1}{8}, \int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8}, m(1) \geq \frac{4}{z \sqrt{1-z^{2}}}, W(1)>0, g<z^{2}\right) \\
& =\mathbb{P}\left(\sup _{0 \leq s \leq 1}\left|\int_{0}^{s} \frac{\mathrm{~d} u}{B(u)}\right| \leq \frac{1}{8}\right) \mathbb{P}\left(\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8}, m(1) \geq \frac{4}{z \sqrt{1-z^{2}}}\right) \mathbb{P}(W(1)>0) \mathbb{P}\left(g<z^{2}\right) \\
& \geq c_{13} z \mathbb{P}\left(\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8}, m(1) \geq \frac{4}{z \sqrt{1-z^{2}}}\right) \\
& =c_{13} z \int_{4 /\left(z \sqrt{1-z^{2}}\right)}^{\infty} \mathbb{P}\left(\left.\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8} \right\rvert\, m(1)=x\right) \mathbb{P}(m(1) \in \mathrm{d} x) .
\end{aligned}
$$

It follows from Facts 2.1 and 2.2 that for $x>0, z>0$

$$
\begin{equation*}
\mathbb{P}\left(\left.\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8} \right\rvert\, m(1)=x\right) \geq \mathbb{P}\left(\left.\int_{0}^{1} \frac{\mathrm{~d} v}{m(v)} \leq \frac{z}{8} \right\rvert\, m(1)=0\right) \geq \frac{c_{14}}{z^{3}} \exp \left(-\frac{c_{15}}{z^{2}}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(m(1)>\frac{4}{z \sqrt{1-z^{2}}}\right)=\exp \left(-\frac{8}{z^{2}\left(1-z^{2}\right)}\right) . \tag{3.12}
\end{equation*}
$$

Putting (3.10), (3.11), (3.12) together, we get (3.7).
Lemma 3.5. For $T>1,0<z \leq 1 / 2,0<\delta \leq 1 / 2$ we have

$$
\begin{align*}
& \mathbb{P}\left(\inf _{0 \leq t \leq T-1} \sup _{0 \leq s \leq 1}|Y(t+s)-Y(t)|<z\right) \\
& \leq c_{16}\left(\exp \left(-\frac{(1-\delta)^{2}}{2(1+\delta)^{2} z^{2} T}\right)+\exp \left(-\frac{c_{5} \delta}{4(1+\delta)^{2} z^{2}}\right)+\exp \left(\frac{c_{17}}{z^{2}}-\frac{c_{18} z^{2}}{T} e^{c_{19} / z^{2}}\right)\right) \tag{3.13}\\
& -935-
\end{align*}
$$

with some positive constants $c_{16}, c_{17}=c_{17}(\delta), c_{18}=c_{18}(\delta), c_{19}=c_{19}(\delta)$.

Proof. Consider a positive integer N to be given later, $h=(T-1) / N, t_{k}=k h, k=0,1,2, \ldots, N$. Then for $0<\delta \leq 1 / 2$ we have

$$
\begin{aligned}
& \mathbb{P}\left(\inf _{0 \leq t \leq T-1} \sup _{0 \leq s \leq 1}|Y(t+s)-Y(t)|<z\right) \\
& \leq \mathbb{P}\left(\inf _{0 \leq k \leq N} \sup _{0 \leq s \leq 1}\left|Y\left(t_{k}+s\right)-Y\left(t_{k}\right)\right| \leq(1+\delta) z\right)+\mathbb{P}\left(\sup _{0 \leq t \leq T-1} \sup _{0 \leq s \leq h}|Y(t+s)-Y(t)|>\delta z\right) \\
& =: P_{1}+P_{2} .
\end{aligned}
$$

By scaling and Lemma 3.1

$$
\begin{aligned}
P_{2} & =\mathbb{P}\left(\sup _{0 \leq t \leq(T-1) / h} \sup _{0 \leq s \leq 1}|Y(t+s)-Y(t)|>\frac{\delta z}{\sqrt{h}}\right) \\
& \leq c_{6}\left(\sqrt{\frac{T-1}{h}+1} \exp \left(-\frac{\delta^{2} z^{2}}{8 h(1+\delta)}\right)+\left(\frac{T-1}{h}+1\right) \exp \left(-\frac{\delta^{2} z^{2}}{2 h(1+\delta)}\right)\right) \\
& \leq 2 c_{6}(N+1) \exp \left(-\frac{\delta^{2} z^{2}}{8 h(1+\delta)}\right) .
\end{aligned}
$$

To bound P_{1}, we denote by $d(t):=\inf \{s \geq t: W(s)=0\}$ the first zero of W after t. Consider those k for which $\sup _{0 \leq s \leq 1}\left|Y\left(t_{k}+s\right)-Y\left(t_{k}\right)\right| \leq(1+\delta) z$. If, moreover, $d\left(t_{k}\right) \geq t_{k}+1-\delta$, which means that the Brownian motion W does not change sign over $\left[t_{k}, t_{k}+1-\delta\right)$, then

$$
(1+\delta) z \geq\left|Y\left(t_{k}+1-\delta\right)-Y\left(t_{k}\right)\right|=\int_{0}^{1-\delta} \frac{\mathrm{d} s}{\left|W\left(t_{k}+s\right)\right|} \geq \frac{1-\delta}{\sup _{0 \leq s \leq T}|W(s)|},
$$

and it follows that

$$
\begin{aligned}
& P_{1} \leq \mathbb{P}\left(\sup _{0 \leq s \leq T}|W(s)|>\frac{(1-\delta)}{z(1+\delta)}\right) \\
& +\mathbb{P}\left(\exists k \leq N: \sup _{0 \leq s \leq 1}\left|Y\left(t_{k}+s\right)-Y\left(t_{k}\right)\right| \leq(1+\delta) z ; d\left(t_{k}\right)<t_{k}+1-\delta\right) \\
& \leq 4 \exp \left(-\frac{(1-\delta)^{2}}{2(1+\delta)^{2} z^{2} T}\right) \\
& +\sum_{k=0}^{N} \mathbb{P}\left(\sup _{0 \leq s \leq 1}\left|Y\left(t_{k}+s\right)-Y\left(t_{k}\right)\right| \leq(1+\delta) z ; d\left(t_{k}\right)<t_{k}+1-\delta\right) .
\end{aligned}
$$

Let $\widehat{W}(s)=W\left(d\left(t_{k}\right)+s\right)$ for $s \geq 0$ and $\widehat{Y}(s)$ be the associated principal values. Observe that on $\left\{\sup _{0 \leq s \leq 1}\left|Y\left(t_{k}+s\right)-Y\left(t_{k}\right)\right| \leq(1+\delta) z ; d\left(t_{k}\right)<t_{k}+1-\delta\right\}$, we have $\sup _{0 \leq u \leq \delta} \mid \widehat{Y}(u)+$ $\left(Y\left(d\left(t_{k}\right)\right)-Y\left(t_{k}\right)\right) \mid<(1+\delta) z$, and $\left|Y\left(d\left(t_{k}\right)\right)-Y\left(t_{k}\right)\right| \leq(1+\delta) z$ which imply that

$$
\sup _{0 \leq u \leq \delta}|\widehat{Y}(u)|<2(1+\delta) z
$$

By scaling and Fact 2.3 we have

$$
\mathbb{P}\left(\sup _{0 \leq u \leq \delta}|\widehat{Y}(u)|<2(1+\delta) z\right) \leq c_{4} \exp \left(-\frac{c_{5} \delta}{4(1+\delta)^{2} z^{2}}\right) .
$$

Therefore, we obtain:

$$
P_{1} \leq 4 \exp \left(-\frac{(1-\delta)^{2}}{2(1+\delta)^{2} z^{2} T}\right)+c_{4}(N+1) \exp \left(-\frac{c_{5} \delta}{4(1+\delta)^{2} z^{2}}\right)
$$

Hence

$$
\begin{aligned}
& P_{1}+P_{2} \leq 4 \exp (\left.-\frac{(1-\delta)^{2}}{2(1+\delta)^{2} z^{2} T}\right)+c_{4}(N+1) \exp \left(-\frac{c_{5} \delta}{4(1+\delta)^{2} z^{2}}\right) \\
&+2 c_{6}(N+1) \exp \left(-\frac{\delta^{2} z^{2}}{8 h(1+\delta)}\right) .
\end{aligned}
$$

By taking $N=\left[e^{c_{5} \delta /\left(4(1+\delta)^{2} z^{2}\right)}\right]+1$, we get

$$
\begin{aligned}
& P_{1}+P_{2} \\
& \leq c_{16}\left(\exp \left(-\frac{(1-\delta)^{2}}{2(1+\delta)^{2} z^{2} T}\right)+\exp \left(-\frac{c_{5} \delta}{4(1+\delta)^{2} z^{2}}\right)+\exp \left(\frac{c_{17}}{z^{2}}-\frac{c_{18} z^{2}}{T} e^{c_{19} / z^{2}}\right)\right)
\end{aligned}
$$

with relevant constants $c_{16}, c_{17}, c_{18}, c_{19}$, proving (3.13).

4. Proof of Theorem 1.1(i)

The upper estimation, i.e.

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{8 a_{T}\left(\log \sqrt{T / a_{T}}+\log \log T\right)}} \leq 1, \quad \text { a.s. } \tag{4.1}
\end{equation*}
$$

follows easily from Wen's Theorem E.
Now we prove the lower bound, i.e.

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{8 a_{T}\left(\log \sqrt{T / a_{T}}+\log \log T\right)}} \geq 1, \quad \text { a.s. } \tag{4.2}
\end{equation*}
$$

In the case when $a_{T}=T$, (4.2) follows from the law of the iterated logarithm (1.3) of Theorem A. Now we assume that $a_{T} / T \leq \rho<1$, with some constant ρ for all $T>0$.

By scaling, (3.2) of Lemma 3.2 is equivalent to

$$
\begin{gather*}
\mathbb{P}\left(\sup _{0 \leq t \leq T-a}(Y(t+a)-Y(t)) \geq z \sqrt{a}\right) \\
\geq \min \left(\frac{1}{2}, \frac{c_{7} \sqrt{T / a-1}}{z} \exp \left(-\frac{z^{2}}{8(1-\delta)}\right)\right)-\exp \left(-z^{2}\right) \tag{4.3}\\
-937-
\end{gather*}
$$

for $0<a<T, 0<\delta<1 / 2, z>1$.
Define the sequences

$$
\begin{equation*}
t_{k}:=e^{7 k \log k}, \quad k=1,2, \ldots \tag{4.4}
\end{equation*}
$$

and $\theta_{0}:=0$,

$$
\begin{equation*}
\theta_{k}:=\inf \left\{t>T_{k}: W(t)=0\right\}, \quad k=1,2, \ldots, \tag{4.5}
\end{equation*}
$$

where $T_{k}:=\theta_{k-1}+t_{k}$. For $0<\delta<\min (1 / 2,1-\rho)$ define the events

$$
A_{k}:=\left\{\sup _{0 \leq t \leq t_{k}(1-\delta)-a_{t_{k}}}\left(Y\left(\theta_{k-1}+t+a_{t_{k}}\right)-Y\left(\theta_{k-1}+t\right)\right) \geq(1-\delta) \beta_{k}\right\}, \quad k=1,2, \ldots
$$

with

$$
\beta_{k}:=\sqrt{8 a_{t_{k}}\left(\log \sqrt{\frac{t_{k}}{a_{t_{k}}}}+\log \log t_{k}\right)}
$$

Applying (4.3) with $T=t_{k}(1-\delta), a=a_{t_{k}}, z=(1-\delta) \sqrt{8\left(\log \sqrt{t_{k} / a_{t_{k}}}+\log \log t_{k}\right)}$, we have for k large

$$
\begin{aligned}
& \mathbb{P}\left(A_{k}\right)=\mathbb{P}\left(\sup _{0 \leq t \leq t_{k}(1-\delta)-a_{t_{k}}}\left(Y\left(t+a_{t_{k}}\right)-Y(t)\right) \geq(1-\delta) \beta_{k}\right) \\
& \quad \geq \min \left(\frac{1}{2}, \frac{b_{k}}{\left(\log t_{k}\right)^{1-\delta}}\right)-\frac{1}{\left(\log t_{k}\right)^{8(1-\delta)^{2}}}
\end{aligned}
$$

with

$$
b_{k}=\frac{c_{7} \sqrt{t_{k}(1-\delta) / a_{t_{k}}-1}}{\left(t_{k} / a_{t_{k}}\right)^{(1-\delta) / 2} \sqrt{\log \sqrt{t_{k} / a_{t_{k}}}+\log \log t_{k}}} \geq \frac{c_{20}}{\sqrt{\log k}}
$$

Hence $\sum_{k} \mathbb{P}\left(A_{k}\right)=\infty$ and since A_{k} are independent, Borel-Cantelli lemma yields

$$
\mathbb{P}\left(A_{k} \text { i.o. }\right)=1
$$

It follows that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{\sup _{0 \leq t \leq t_{k}(1-\delta)-a_{t_{k}}}\left(Y\left(\theta_{k-1}+t+a_{t_{k}}\right)-Y\left(\theta_{k-1}+t\right)\right)}{\sqrt{8 a_{t_{k}}\left(\log \sqrt{\frac{t_{k}}{a_{t_{k}}}}+\log \log t_{k}\right)}} \geq 1-\delta, \quad \text { a.s. } \tag{4.6}
\end{equation*}
$$

It can be seen (cf. [9]) that we have almost surely for large enough k

$$
t_{k} \leq T_{k} \leq t_{k}\left(1+\frac{1}{k}\right)
$$

consequently

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{t_{k}}{T_{k}}=1, \quad \text { a.s. } \tag{4.7}
\end{equation*}
$$

Since by our assumptions

$$
\frac{t_{k}}{T_{k}} \leq \frac{a_{t_{k}}}{a_{T_{k}}} \leq 1
$$

we have also

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{a_{t_{k}}}{a_{T_{k}}}=1, \quad \text { a.s. } \tag{4.8}
\end{equation*}
$$

On the other hand, for any $\delta>0$ small enough we have almost surely for large k

$$
a_{T_{k}} \leq(1+\delta) a_{t_{k}} \leq t_{k} \delta+a_{t_{k}},
$$

thus

$$
T_{k}-a_{T_{k}} \geq T_{k}-t_{k} \delta-a_{t_{k}},
$$

consequently

$$
\begin{align*}
& \sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)| \tag{4.9}\\
& \geq \sup _{0 \leq t \leq t_{k}(1-\delta)-a_{t_{k}}}\left(Y\left(\theta_{k-1}+t+a_{t_{k}}\right)-Y\left(\theta_{k-1}+t\right)\right),
\end{align*}
$$

hence we have also

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{\sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)|}{\sqrt{8 a_{t_{k}}\left(\log \sqrt{\frac{t_{k}}{a_{t_{k}}}}+\log \log t_{k}\right)}} \geq 1-\delta, \quad \text { a.s. } \tag{4.10}
\end{equation*}
$$

and since $\delta>0$ can be arbitrary small, (4.2) follows by combining (4.7), (4.8), (4.9) and (4.10).

5. Proof of Theorem 1.1(ii)

First assume that

$$
\begin{equation*}
a_{T}>\frac{T}{(\log T)^{\alpha}} \quad \text { for some } \quad \alpha<2 \tag{5.1}
\end{equation*}
$$

By Theorem C,

$$
\begin{gather*}
\liminf _{T \rightarrow \infty} \sqrt{\frac{\log \log T}{a_{T}}} \sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \tag{5.2}\\
\geq \liminf _{T \rightarrow \infty} \sqrt{\frac{\log \log a_{T}}{a_{T}}} \sup _{0 \leq s \leq a_{T}}|Y(s)| \geq K_{1}, \quad \text { a.s., } \\
-939-
\end{gather*}
$$

proving the lower bound in (1.12).
To get an upper bound, note that by scaling, (3.7) of Lemma 3.4 is equivalent to

$$
\begin{equation*}
\mathbb{P}\left(\sup _{0 \leq t \leq T-a} \sup _{0 \leq s \leq a}|Y(s+t)-Y(t)|<z \sqrt{a}\right) \geq c_{10} \sqrt{\frac{a}{T}} \exp \left(-\frac{c_{11}}{z^{2}}\right) \tag{5.3}
\end{equation*}
$$

for $T \geq a, 0<z \leq 1 / 2$.
Let t_{k} and θ_{k} be defined by (4.4) and (4.5), resp., $T_{k}=\theta_{k-1}+t_{k}$ as in the proof of Theorem 1.1(i). Let c_{11} be the constant as in (5.3) and choose $\delta>0$ such that $\alpha / 2+c_{11} / \delta^{2}<1$. For $\varepsilon>0$ define the events

$$
E_{k}:=\left\{\sup _{0 \leq t \leq(1+\varepsilon) t_{k}-a_{t_{k}(1+\varepsilon)}} \sup _{0 \leq s \leq a_{t_{k}}(1+\varepsilon)}\left|Y\left(\theta_{k-1}+t+s\right)-Y\left(\theta_{k-1}+t\right)\right| \leq \delta \sqrt{\frac{a_{t_{k}}}{\log \log t_{k}}}\right\} .
$$

Then putting $T=(1+\varepsilon) t_{k}, a=a_{(1+\varepsilon) t_{k}}, z=\delta / \sqrt{\log \log t_{k}}$ into (5.3), we get

$$
\begin{aligned}
& \mathbb{P}\left(E_{k}\right)=\mathbb{P}\left(\sup _{0 \leq t \leq(1+\varepsilon) t_{k}-a_{t_{k}(1+\varepsilon)}} \sup _{0 \leq s \leq a_{t_{k}(1+\varepsilon)}}|Y(t+s)-Y(t)| \leq \delta \sqrt{\frac{a_{t_{k}}}{\log \log t_{k}}}\right) \\
& \geq c_{10} \sqrt{\frac{a_{t_{k}}}{t_{k}}} \exp \left(-\left(c_{11} / \delta^{2}\right) \log \log \left(t_{k}\right) \geq \frac{c_{10}}{\left(\log t_{k}\right)^{\alpha / 2+c_{11} / \delta^{2}}}=\frac{c_{10}}{(7 k \log k)^{\alpha / 2+c_{11} / \delta^{2}}},\right.
\end{aligned}
$$

hence $\sum_{k} \mathbb{P}\left(E_{k}\right)=\infty$, and since E_{k} are independent, we have $\mathbb{P}\left(E_{k}\right.$ i.o. $)=1$, i.e.
(5.4) $\liminf _{k \rightarrow \infty} \sqrt{\frac{\log \log t_{k}}{a_{t_{k}}}} \sup _{0 \leq t \leq(1+\varepsilon) t_{k}-a_{t_{k}(1+\varepsilon)}} \sup _{0 \leq s \leq a_{t_{k}(1+\varepsilon)}}\left|Y\left(\theta_{k-1}+t+s\right)-Y\left(\theta_{k-1}+t\right)\right| \leq \delta$, a.s.
for any $\varepsilon>0$. For large enough k by (4.7) and (4.8) we have $a_{T_{k}} \leq(1+\varepsilon) a_{t_{k}}$, a.s. and $T_{k}-a_{T_{k}} \leq$ $\theta_{k-1}+(1+\varepsilon) t_{k}-(1+\varepsilon) a_{t_{k}}$, a.s. Thus given any $\varepsilon>0$, we have for large k

$$
\begin{align*}
& \sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)| \\
& \leq 2 \sup _{0 \leq t \leq \theta_{k-1}}|Y(t)|+\sup _{0 \leq t \leq(1+\varepsilon) t_{k}-a_{t_{k}(1+\varepsilon)}} \sup _{0 \leq s \leq a_{t_{k}(1+\varepsilon)}}\left|Y\left(\theta_{k-1}+t+s\right)-Y\left(\theta_{k-1}+t\right)\right| . \tag{5.5}
\end{align*}
$$

By Theorem A, Fact 2.8, (4.7), (5.1) and simple calculation,

$$
\begin{align*}
& \sup _{0 \leq t \leq \theta_{k-1}}|Y(t)|=O\left(\theta_{k-1} \log \log \theta_{k-1}\right)^{1 / 2} \\
& =O\left(t_{k-1}\left(\log t_{k-1}\right)^{3} \log \log t_{k-1}\right)^{1 / 2}=o\left(\frac{a_{t_{k}}}{\log \log t_{k}}\right)^{1 / 2}, \quad \text { a.s. } \tag{5.6}
\end{align*}
$$

as $k \rightarrow \infty$. Assembling (5.4), (5.5) and (5.6), we get

$$
\begin{gathered}
\liminf _{k \rightarrow \infty} \sqrt{\frac{\log \log t_{k}}{a_{t_{k}}}} \sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)| \\
-940-
\end{gathered}
$$

$$
=\liminf _{k \rightarrow \infty} \sqrt{\frac{\log \log T_{k}}{a_{T_{k}}}} \sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)| \leq \delta, \quad \text { a.s. }
$$

which together with (5.2) yields (1.12).
Now assume that

$$
\begin{equation*}
a_{T} \leq \frac{T}{(\log T)^{\alpha}} \quad \text { for some } \quad \alpha>2 \tag{5.7}
\end{equation*}
$$

By Theorem 1.1(i),

$$
\begin{align*}
& \liminf _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{a_{T} \log \left(T / a_{T}\right)}} \\
& \leq \limsup _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{a_{T} \log \left(T / a_{T}\right)}} \tag{5.8}\\
& \leq \limsup _{T \rightarrow \infty} \frac{\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|}{\sqrt{\frac{2 \alpha a_{T}}{\alpha+2}\left(\log \sqrt{T / a_{T}}+\log \log T\right)}} \leq 2 \sqrt{\frac{\alpha+2}{\alpha}}
\end{align*}
$$

i.e., an upper bound in (1.13) follows.

To get a lower bound under (5.7), observe that by scaling, (3.6) of Lemma 3.3 is equivalent to

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T-a}(Y(t+a)-Y(t))<z \sqrt{a}\right) \leq 5\left(\frac{a}{T}\right)^{\kappa / 2}+\exp \left(-c_{9}\left(\frac{T}{a}\right)^{(1-\kappa) / 2} e^{-(1+\delta) z^{2} / 8}\right)
$$

for $a \leq T, 0 \leq \kappa<1,0<\delta, 0<z$. Using (5.7) we get further

$$
\begin{align*}
& \mathbb{P}\left(\sup _{0 \leq t \leq T-a}(Y(t+a)-Y(t))<z \sqrt{a}\right) \\
& \leq \frac{5}{(\log T)^{\alpha \kappa / 2}}+\exp \left(-c_{9}(\log T)^{\alpha(1-\kappa) / 2} e^{-(1+\delta) z^{2} / 8}\right) \tag{5.9}
\end{align*}
$$

In the case when (1.7) holds, (1.13) was proved in [7]. In other cases the proof is similar. Let $T_{k}=e^{k}$ and define the events

$$
F_{k}=\left\{\sup _{0 \leq t \leq T_{k}-a_{T_{k}}}\left(Y\left(t+a_{T_{k}}\right)-Y(t)\right) \leq C_{1} \sqrt{a_{T_{k}} \log \frac{T_{k}}{a_{T_{k}}}}\right\}
$$

with

$$
C_{1}=2 \sqrt{\frac{\alpha-2-2 \varepsilon \alpha}{(1+\delta) \alpha}}
$$

By (5.9) with $\kappa=2 / \alpha+\varepsilon$,

$$
\mathbb{P}\left(F_{k}\right) \leq \frac{5}{k^{\alpha \kappa / 2}}+\exp \left(-c_{9} k^{\alpha\left((1-\kappa) / 2-(1+\delta) C_{1}^{2} / 8\right)}\right) \leq \frac{5}{k^{1+\alpha \varepsilon / 2}}+\exp \left(-c_{9} k^{\alpha \varepsilon / 2}\right)
$$

One can easily see that with these choices $\sum_{k} \mathbb{P}\left(F_{k}\right)<\infty$, consequently

$$
\liminf _{k \rightarrow \infty} \frac{\sup _{0 \leq t \leq T_{k}-a_{T_{k}}}\left(Y\left(t+a_{T_{k}}\right)-Y(t)\right)}{\sqrt{a_{T_{k}} \log \frac{T_{k}}{a_{T_{k}}}}} \geq C_{1}, \quad \text { a.s., }
$$

implying also

$$
\liminf _{k \rightarrow \infty} \frac{\sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)|}{\sqrt{a_{T_{k}} \log \frac{T_{k}}{a_{T_{k}}}}} \geq 2 \sqrt{\frac{\alpha-2}{\alpha}}, \quad \text { a.s., }
$$

for ε can be choosen arbitrary small.
Since $\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)|$ is increasing in T, we obtain a lower bound in (1.13). This together with the $0-1$ law for Brownian motion complete the proof of Theorem 1.1(ii).

6. Proof of Theorem 1.2(i)

If $a_{T}=T$, then (1.14) is equivalent to Theorem C. Now assume that $\rho:=\lim _{T \rightarrow \infty} a_{T} / T<1$.
First we prove the lower bound, i.e.

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\sqrt{T \log \log T}}{a_{T}} \inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \geq c, \quad \text { a.s. } \tag{6.1}
\end{equation*}
$$

By scaling, (3.13) of Lemma 3.5 is equivalent to

$$
\begin{align*}
& \mathbb{P}\left(\inf _{0 \leq t \leq T-a} \sup _{0 \leq s \leq a}|Y(t+s)-Y(t)|<z \sqrt{a}\right) \\
& \leq c_{16}\left(\exp \left(-\frac{a(1-\delta)^{2}}{2(1+\delta)^{2} z^{2} T}\right)+\exp \left(-\frac{c_{5} \delta}{4(1+\delta)^{2} z^{2}}\right)+\exp \left(\frac{c_{17}}{z^{2}}-\frac{c_{18} a z^{2}}{T} e^{c_{19} / z^{2}}\right)\right) \tag{6.2}
\end{align*}
$$

for $a<T, 0<z \leq 1 / 2,0<\delta \leq 1 / 2$.
Define the events

$$
G_{k}=\left\{\inf _{0 \leq t \leq T_{k+1}-a_{T_{k}}} \sup _{0 \leq s \leq a_{T_{k}}}|Y(t+s)-Y(t)|<z_{k} \sqrt{a_{T_{k}}}\right\} \quad k=1,2, \ldots
$$

Let $T_{k}=e^{k}$ and put $T=T_{k+1}, a=a_{T_{k}}$,

$$
z=z_{k}=C_{2} \sqrt{\frac{a_{T_{k}}}{T_{k+1} \log \log T_{k+1}}}
$$

into (6.2). The constant C_{2} will be choosen later. Denoting the terms on the right-hand side of (6.2) by I_{1}, I_{2}, I_{3}, resp., we have

$$
\begin{gathered}
\mathbb{P}\left(G_{k}\right) \leq c_{16}\left(I_{1}^{(k)}+I_{2}^{(k)}+I_{3}^{(k)}\right) \\
-942-
\end{gathered}
$$

where

$$
\begin{gathered}
I_{1}^{(k)}=\exp \left(-\frac{c_{21}}{C_{2}^{2}} \log \log T_{k+1}\right), \\
I_{2}^{(k)}=\exp \left(-\frac{c_{22} T_{k}}{C_{2}^{2} a_{T_{k}}} \log \log T_{k+1}\right), \\
I_{3}^{(k)}=\exp \left(\frac{c_{23} T_{k} \log \log T_{k+1}}{C_{2}^{2} a_{T_{k}}}-\frac{c_{24} C_{2}^{2} a_{T_{k}}^{2}}{T_{k}^{2} \log \log T_{k+1}}\left(\log T_{k+1}\right)^{\frac{c_{25} T_{k} T_{k}}{C_{2}^{2} T_{k}}}\right)
\end{gathered}
$$

with some constants $c_{21}=c_{21}(\delta), c_{22}=c_{22}(\delta), c_{23}, c_{24}, c_{25}$.
One can see easily that for any choice of positive C_{2} and for all possible a_{T} (satisfying our conditions) we have $\sum_{k} I_{3}^{(k)}<\infty$. So we show that for appropriate choice of C_{2} we have also $\sum_{k} I_{j}^{(k)}<\infty, j=1,2$.

First consider the case $0<\rho$. Choosing a positive δ, one can select $C_{2}<\min \left(\sqrt{c_{21}}, \sqrt{\frac{c_{22}}{\rho}}\right)$ and it is easy to verify that $\sum_{k} I_{j}^{(k)}<\infty, j=1,2$, hence also $\sum_{k} \mathbb{P}\left(G_{k}\right)<\infty$.

In the case $\rho=0$ choose $C_{2}<(1-\delta) /((1+\delta) \sqrt{2})$. With this choice we have $\sum_{k} I_{1}^{(k)}<\infty$ for arbitrary $\delta>0$. Since $\lim _{k \rightarrow \infty}\left(T_{k} / a_{T_{k}}\right)=\infty$, we have also $\sum_{k} I_{2}^{(k)}<\infty$ and $\sum_{k} \mathbb{P}\left(G_{k}\right)<\infty$. The Borel-Cantelli lemma and interpolation between T_{k} 's finish the proof of (6.1). We have also verified that in the case $\rho=0$ one can choose $c=1 / \sqrt{2}$ in (6.1), since $\delta>0$ can be choosen arbitrary small.

Now we turn to the proof of the upper bound, i.e.

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{\sqrt{T \log \log T}}{a_{T}} \inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \leq C_{3}, \quad \text { a.s. } \tag{6.3}
\end{equation*}
$$

with some constant C_{3}.
If $\rho>0$, then

$$
\inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \leq \sup _{0 \leq s \leq a_{T}}|Y(s)| \leq \sup _{0 \leq s \leq T}|Y(s)|
$$

and hence (6.3) with some positive constant C_{3} follows from Theorem C.
If $\rho=0$, then let for any $\varepsilon>0$

$$
\begin{equation*}
\lambda_{T}:=\inf \left\{t:|W(t)|=\sup _{0 \leq s \leq T(1-\varepsilon)}|W(s)|\right\} . \tag{6.4}
\end{equation*}
$$

According to the law of the iterated logarithm, with probability one there exists a sequence $\left\{T_{i}, i \geq\right.$ $1\}$ such that $\lim _{i \rightarrow \infty} T_{i}=\infty$ and

$$
\begin{equation*}
\left|W\left(\lambda_{T_{i}}\right)\right| \geq \sqrt{2 T_{i}(1-\varepsilon) \log \log T_{i}} . \tag{6.5}
\end{equation*}
$$

But Fact 2.4 implies that for $\varepsilon>0$

$$
\begin{equation*}
\left|W\left(\lambda_{T_{i}}\right)-W(s)\right| \leq \sqrt{2(1+\varepsilon) \varepsilon T_{i} \log \log T_{i}}, \quad \lambda_{T_{i}} \leq s \leq \lambda_{T_{i}}+\varepsilon T_{i}, \quad i \geq 1 \tag{6.6}
\end{equation*}
$$

Now assume that $W\left(\lambda_{T_{i}}\right)>0$. The case when $W\left(\lambda_{T_{i}}\right)<0$ is similar. Then (6.5) and (6.6) imply

$$
\begin{equation*}
W(s) \geq(\sqrt{1-\varepsilon}-\sqrt{\varepsilon(1+\varepsilon)}) \sqrt{2 T_{i} \log \log T_{i}}, \quad \lambda_{T_{i}} \leq s \leq \lambda_{T_{i}}+\varepsilon T_{i} . \tag{6.7}
\end{equation*}
$$

$\rho=0$ implies that $a_{T} \leq \varepsilon T$ for any $\varepsilon>0$ and large enough T, hence we have from (6.7) for large i

$$
\begin{gathered}
\sup _{0 \leq s \leq a_{T_{i}}}\left(Y\left(\lambda_{T_{i}}+s\right)-Y\left(\lambda_{T_{i}}\right)\right)=Y\left(\lambda_{T_{i}}+a_{T_{i}}\right)-Y\left(\lambda_{T_{i}}\right)=\int_{\lambda_{T_{i}}}^{\lambda_{T_{i}}+a_{T_{i}}} \frac{\mathrm{~d} s}{W(s)} \\
\leq \frac{a_{T_{i}}}{(\sqrt{1-\varepsilon}-\sqrt{\varepsilon(1+\varepsilon)}) \sqrt{2 T_{i} \log \log T_{i}}}
\end{gathered}
$$

Since $\varepsilon>0$ is arbitrary, (6.3) follows with $C_{3}=1 / \sqrt{2}$. This completes the proof of Theorem 1.2(i).

7. Proof of Theorem 1.2(ii)

If $\rho=1$, then (1.15) is equivalent to (1.3) of Theorem A. So we may assume that $0<\rho<1$. It suffices to show (1.15) when $a_{T}=\rho T$.

First we prove the upper bound

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\inf _{0 \leq t \leq T-\rho T} \sup _{0 \leq s \leq \rho T}|Y(t+s)-Y(t)|}{\sqrt{8 T \log \log T}} \leq \rho, \quad \text { a.s. } \tag{7.1}
\end{equation*}
$$

Let k be the largest integer for which $k \rho<1$ and put $x_{i}=i \rho, i=0,1, \ldots, k, x_{k+1}=1$. It suffices to show that if $f \in \mathcal{S}$ defined by (1.5), then

$$
\min _{1 \leq i \leq k+1}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \leq \rho
$$

Assume on the contrary that

$$
\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|>\rho, \quad \forall i=1,2, \ldots, k+1
$$

Then

$$
\sum_{i=1}^{k+1} \frac{\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}}{x_{i}-x_{i-1}}>\sum_{i=1}^{k} \frac{\rho^{2}}{\rho}+\frac{\rho^{2}}{1-k \rho}=k \rho+\frac{\rho^{2}}{1-k \rho} \geq 1,
$$

contradicting (2.12) of Fact 2.5. This proves (7.1).

The lower bound

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{\inf _{0 \leq t \leq T-\rho T} \sup _{0 \leq s \leq \rho T}|Y(t+s)-Y(t)|}{\sqrt{8 T \log \log T}} \geq \rho, \quad \text { a.s. } \tag{7.2}
\end{equation*}
$$

follows from the fact that by Theorem B the function $f(x)=x, 0 \leq x \leq 1$ is a limit point of

$$
\frac{Y(x t)}{\sqrt{8 T \log \log T}}
$$

and for this function

$$
\min _{0 \leq x \leq 1-\rho}|f(x+\rho)-f(x)|=\rho .
$$

This completes the proof of Theorem 1.2(iia).
Now assume that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{a_{T}(\log \log T)^{2}}{T}=0 \tag{7.3}
\end{equation*}
$$

Define λ_{T} as in (6.4). Then according to Chung's LIL (cf. Fact 2.6)

$$
\begin{equation*}
\left|W\left(\lambda_{T}\right)\right| \geq \frac{\pi}{\sqrt{8}}(1-\varepsilon) \sqrt{\frac{T}{\log \log T}} \tag{7.4}
\end{equation*}
$$

for $\varepsilon>0$ and all T sufficiently large. But according to Fact 2.4,

$$
\begin{aligned}
& \sup _{0 \leq s \leq a_{T}}\left|W\left(\lambda_{T}+s\right)-W\left(\lambda_{T}\right)\right| \\
& \leq \sqrt{(2+\varepsilon) a_{T}\left(\log \left(T / a_{T}\right)+\log \log T\right)} \leq \sqrt{\frac{(2+\varepsilon) \varepsilon T}{\log \log T}} .
\end{aligned}
$$

Assuming $W\left(\lambda_{T}\right)>0$, on choosing suitable $\varepsilon>0$ we get for some $c_{26}>0$

$$
W\left(\lambda_{T}+s\right) \geq W\left(\lambda_{T}\right)-\sqrt{\frac{(2+\varepsilon) \varepsilon T}{\log \log T}} \geq c_{26} \sqrt{\frac{T}{\log \log T}} .
$$

Hence

$$
\begin{aligned}
\inf _{0 \leq t \leq T-a_{T}} & \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \leq Y\left(\lambda_{T}+a_{T}\right)-Y\left(\lambda_{T}\right) \\
& =\int_{0}^{a_{T}} \frac{\mathrm{~d} s}{W\left(\lambda_{T}+s\right)} \leq \frac{a_{T}}{c_{26}} \sqrt{\frac{\log \log T}{T}}
\end{aligned}
$$

for all large T.
The case when $W\left(\lambda_{T}\right)<0$ is similar. This shows the upper bound in (1.16).

For the lower bound we use Fact 2.7: with probability one

$$
\begin{equation*}
g_{T} \leq \frac{T}{(\log \log T)^{2}}, \quad \max _{0 \leq u \leq T}|W(u)| \leq \frac{\pi}{\sqrt{2}} \sqrt{\frac{T}{\log \log T}}, \quad \text { i.o. } \tag{7.5}
\end{equation*}
$$

According to Theorem 1.2(i) we have for any $\varepsilon>0$ and all large T

$$
\begin{align*}
& 0 \leq t \leq T(\log \log T)^{-2} \\
& \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \tag{7.6}\\
& \geq \frac{\left(K_{4}-\varepsilon\right) a_{T}}{\sqrt{\left(\frac{T}{(\log \log T)^{2}}+a_{T}\right) \log \log T}} \geq \frac{\left(K_{4}-\varepsilon\right) a_{T} \sqrt{\log \log T}}{\sqrt{(1+\varepsilon) T}}
\end{align*}
$$

On the other hand, if $T(\log \log T)^{-2} \leq t \leq T-a_{T}$, and (7.5) is satisfied, then

$$
\begin{equation*}
\left|Y\left(t+a_{T}\right)-Y(t)\right|=\int_{t}^{t+a_{T}} \frac{\mathrm{~d} s}{|W(s)|} \geq \frac{a_{T} \sqrt{2 \log \log T}}{\pi \sqrt{T}}, \quad \text { i.o. } \tag{7.7}
\end{equation*}
$$

Combining (7.6) and (7.7) for $\varepsilon>0$ with probability one

$$
\inf _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}}|Y(t+s)-Y(t)| \geq \min \left(\frac{K_{4}-\varepsilon}{\sqrt{1+\varepsilon}}, \frac{\sqrt{2}}{\pi}\right) \frac{a_{T} \sqrt{\log \log T}}{T}, \quad \text { i.o. }
$$

This shows the lower bound in (1.16). The proof of Theorem $1.2(\mathrm{iib})$ is complete by applying the 0-1 law for Brownian motion.

Acknowledgements

The authors are indebted to Marc Yor for helpful remarks. We thank also the referee for useful suggestions. Cooperation between the authors was supported by the joint French-Hungarian Intergovernmental Grant "Balaton" (grant no. F-39/00).

References

[1] Ait Ouahra, M. and Eddahbi, M.: Théorèmes limites pour certaines fonctionnelles associées aux processus stables sur l'espace de Hölder. Publ. Mat. 45 (2001), 371-386.
[2] Bertoin, J.: On the Hilbert transform of the local times of a Lévy process. Bull. Sci. Math. 119 (1995), 147-156.
[3] Bertoin, J.: Cauchy's principal value of local times of Lévy processes with no negative jumps via continuous branching processes. Electronic J. Probab. 2 (1997), Paper No. 6, 1-12.
[4] Biane, P. and Yor, M.: Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. 111 (1987), 23-101.
[5] Boufoussi, B., Eddahbi, M. and Kamont, A.: Sur la dérivée fractionnaire du temps local brownien. Probab. Math. Statist. 17 (1997), 311-319.
[6] Chung, K.L.: On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64 (1948), 205-233.
[7] Csáki, E., Csörgő, M. Földes, A. and Shi, Z.: Increment sizes of the principal value of Brownian local time. Probab. Th. Rel. Fields 117 (2000), 515-531.
[8] Csáki, E., Csörgő, M. Földes, A. and Shi, Z.: Path properties of Cauchy's principal values related to local time. Studia Sci. Math. Hungar. 38 (2001), 149-169.
[9] Csáki, E. and Földes, A.: A note on the stability of the local time of a Wiener process. Stoch. Process. Appl. 25 (1987), 203-213.
[10] Csáki, E., Földes, A. and Shi, Z.: A joint functional law for the Wiener process and principal value. Studia Sci. Math. Hungar. 40 (2003), 213-241.
[11] Csáki, E., Shi, Z. and Yor, M.: Fractional Brownian motions as "higher-order" fractional derivatives of Brownian local times. In: Limit Theorems in Probability and Statistics (I. Berkes et al., eds.) Vol. I, pp. 365-387. János Bolyai Mathematical Society, Budapest, 2002.
[12] Csörgő, M. and Révész, P.: Strong Approximations in Probability and Statistics. Academic Press, New York, 1981.
[13] Fitzsimmons, P.J. and Getoor, R.K.: On the distribution of the Hilbert transform of the local time of a symmetric Lévy process. Ann. Probab. 20 (1992), 1484-1497.
[14] Gradshteyn, I.S. and Ryzhik, I.M.: Table of Integrals, Series, and Products. Sixth ed. Academic Press, San Diego, CA, 2000.
[15] Grill, K.: On the last zero of a Wiener process. In: Mathematical Statistics and Probability Theory (M.L. Puri et al., eds.) Vol. A, pp. 99-104. D. Reidel, Dordrecht, 1987.
[16] Hu, Y.: The laws of Chung and Hirsch for Cauchy's principal values related to Brownian local times. Electronic J. Probab. 5 (2000), Paper No. 10, 1-16.
[17] Hu, Y. and Shi, Z.: An iterated logarithm law for Cauchy's principal value of Brownian local times. In: Exponential Functionals and Principal Values Related to Brownian Motion (M. Yor, ed.), pp. 131-154. Biblioteca de la Revista Matemática Iberoamericana, Madrid, 1997.
[18] Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Gebiete 3 (1964), 211-226.
[19] Wen, Jiwei: Some results on lag increments of the principal value of Brownian local time. Appl. Math. J. Chinese Univ. Ser. B 17 (2002), 199-207.
[20] Yamada, T.: Principal values of Brownian local times and their related topics. In: Itô's Stochastic Calculus and Probability Theory (N. Ikeda et al., eds.), pp. 413-422. Springer, Tokyo, 1996.
[21] Yor, M.: Some Aspects of Brownian Motion. Part 1: Some Special Functionals. ETH Zürich Lectures in Mathematics. Birkhäuser, Basel, 1992.
[22] Yor, M., editor: Exponential Functionals and Principal Values Related to Brownian Motion. Biblioteca de la Revista Matemática Iberoamericana, Madrid, 1997.

[^0]: ${ }^{1}$ Research supported by the Hungarian National Foundation for Scientific Research, Grant No. T 037886 and T 043037.

