Open Access
Translator Disclaimer
2005 Limit Theorems for Self-Normalized Large Deviation
Qiying Wang
Author Affiliations +
Electron. J. Probab. 10: 1260-1285 (2005). DOI: 10.1214/EJP.v10-289

Abstract

Let $X, X_1, X_2, \cdots $ be i.i.d. random variables with zero mean and finite variance $\sigma^2$. It is well known that a finite exponential moment assumption is necessary to study limit theorems for large deviation for the standardized partial sums. In this paper, limit theorems for large deviation for self-normalized sums are derived only under finite moment conditions. In particular, we show that, if $EX^4 < \infty$, then $$ \frac{P(S_n /V_n \geq x)}{1-\Phi(x)} \exp\left\{ -\frac{x^3 EX^3}{3\sqrt{ n}\sigma^3} \right\} \left[ 1 + O\left(\frac{1+x} {\sqrt {n}}\right) \right], $$ for $x \ge 0$and $x = O(n^{1/6})$, where $S_n\sum_{i=1}^nX_i$ and $V_n (\sum_{i=1}^n X_i^2)^{1/2}$.

Citation

Download Citation

Qiying Wang. "Limit Theorems for Self-Normalized Large Deviation." Electron. J. Probab. 10 1260 - 1285, 2005. https://doi.org/10.1214/EJP.v10-289

Information

Accepted: 14 November 2005; Published: 2005
First available in Project Euclid: 1 June 2016

zbMATH: 1112.60020
MathSciNet: MR2176384
Digital Object Identifier: 10.1214/EJP.v10-289

Subjects:
Primary: 60F05
Secondary: 62E20

Keywords: Cram'er large deviation , limit theorem

JOURNAL ARTICLE
26 PAGES


SHARE
Vol.10 • 2005
Back to Top