Abstract
We study how the Gaussian multiplicative chaos (GMC) measures $\mu ^\gamma $ corresponding to the 2D Gaussian free field change when $\gamma $ approaches the critical parameter $2$. In particular, we show that as $\gamma \to 2^{-}$, $(2-\gamma )^{-1}\mu ^\gamma $ converges in probability to $2\mu '$, where $\mu '$ is the critical GMC measure.
Citation
Juhan Aru. Ellen Powell. Avelio Sepúlveda. "Critical Liouville measure as a limit of subcritical measures." Electron. Commun. Probab. 24 1 - 16, 2019. https://doi.org/10.1214/19-ECP209
Information