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Abstract
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1 Introduction

Gaussian multiplicative chaos (GMC) theory aims to give a meaning to the heuristic
volume form “eΓdLeb”, where Γ is some rough Gaussian field that is not defined pointwise.
Such constructions first appeared for Gaussian free fields in the early 70s [HK71], where∫
D
eΓdLeb was defined to add an exponential interaction to the underlying free field. The

theory was then developed for a larger class of Gaussian fields, and named as Gaussian
multiplicative chaos, by Kahane [Kah85].

GMC measures corresponding to the 2D continuum Gaussian free field (GFF), have
recently become an active area of study, due to their links to the probabilistic description
of 2D Liouville quantum gravity [DS11, DKRV16]. Out of convention, we will call such
measures the Liouville measures 1.

In this article, we study how the Liouville measures µγ vary, for a fixed underlying
field, when the parameter γ tends to the critical parameter γ = 2 from below. It is
known that the measures µγ change analytically in γ throughout the subcritical regime
0 ≤ γ < 2 (it follows, for example, from a more general result, Theorem 4 of [Jun16]
2), and also not hard to show that µγ → 0 as γ → 2. In Conjecture 9 of [DRSV14a],
the authors conjecture that (2− γ)−1µγ converges to a multiple of the so-called critical
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1In the physics literature, “Liouville measure" refers to a volume form coming from a conformal field

theory with a non-zero interaction term (see [RV16, Section 3.6]), inducing a certain weight on the law of the
underlying GFF. Therefore, our measures correspond to a degenerate case, where the interaction parameter is
equal to 0.

2Indeed, when one considers the approximation of the GFF on [0, 1]2 by DGFF-s, then the conditions (4),
(7) and the condition on exponential moments can be checked directly; the condition (5) follows from the
estimates on the discrete Green’s function due to Kenyon, as given for example in Theorem 2.5 of [CS11]
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Critical Liouville measure as a limit of subcritical measures

Liouville measure µ′. The main result of this paper is the confirmation of this conjecture,
and determination that the constant is equal to two (see Remark 4.3 for a discussion).
More precisely, we prove that:

Theorem 1.1. Let Γ be a zero boundary Gaussian free field in a domain D ⊂ C and let
µγ for γ < 2 be the associated sequence of Liouville measures (defined in Theorem 2.4)
together with µ′ the critical Liouville measure (defined in Theorem 2.6). Then as γ → 2−

we have
µγ

2− γ
→ 2µ′

in probability, with respect to weak convergence of measures.

The analogous result, in the setting of multiplicative cascades/branching random walk,
was already known [Mad16]. Our proof strategy is to use the construction of Liouville
measure as the multiplicative cascade introduced in [APS17] and to then transfer the
proof from the case of cascades over to the case of the Liouville measure. Whereas we
roughly follow the proof in [Mad16], in some places there are additional technicalities,
and in others there are simplifications. Moreover, we strongly use the results on the
Seneta-Heyde scaling of the Liouville measure proved in [APS17].

Our results are a very first step (see Section 4.1) towards taking γ → 2− limits in the
peano-sphere approach to 2D Liouville quantum gravity [DMS14], and also allow one to
extend the Fyodorov-Bouchaud formula [Rem17] to the critical case.

The rest of the article is structured as follows: we start with basic definitions followed
by a few preliminary lemmas; in Section 4 we prove the main result; and finally, we
discuss some extensions.

2 Basic definitions

Since this article is intended to be a rather brief follow-up to [APS17], we keep the pre-
liminaries to a minimum. We refer the reader to [APS17] for more detailed background
on the planar Gaussian free field, its local sets and associated chaos measures.

2.1 The Gaussian free field and first passage sets

We denote by Γ a Gaussian free field with zero boundary conditions in a simply
connected domain D ⊂ C. That is, Γ is a centered Gaussian process indexed by the set
of smooth functions in D, with covariance given by

E [(Γ, f)(Γ, g)] =
x

D×D

f(x)GD(x, y)g(y)dxdy. (2.1)

Here GD is the Dirichlet Green’s function in D. We normalise it so that as x → y,
GD(x, y) ∼ log(1/|x− y|).

One important characteristic of the Gaussian free field is that it satisfies a spatial
Markov property. In fact, it also satisfies a strong spatial Markov property at certain
stopping, or “local” sets, first studied in [SS13]:

Definition 2.1 (Local sets). Consider a random triple (Γ, A,ΓA), where Γ is a GFF in D,
A is a random closed subset of D and ΓA a random distribution that can be viewed as
a harmonic function, hA, when restricted to D \ A. We say that A is a local set for Γ if
conditionally on A and ΓA, ΓA := Γ− ΓA is a (zero-boundary) GFF in D \A.

One particularly nice class of local sets are those corresponding to the first hitting
time of level a ≥ 0 of a Brownian motion. They are called first passage sets (FPS), were
introduced in [ALS17], and are characterised by the following proposition:
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Proposition 2.2 (First passage sets). Let a ≥ 0 and Γ be a GFF in D. Then, there exists
a unique local set Aa of Γ such that:

i) hAa = a

ii) a− ΓAa is a positive measure.

Aa is called the “first passage set” of level a of Γ.

We will need the following simple properties of the FPS, see e.g. [APS17] for explana-
tions and [ALS17, ALS18] for further properties.

Proposition 2.3. Let a, δ ≥ 0 and Γ be a GFF, then

1. Aa has 0 Lebesgue measure.

2. Aa+δ can be explored by first exploring Aa, and then inside every connected
component O of D\Aa, exploring Aδ of ΓAa restricted to O. In particular Aa ⊆ Aa+δ.

2.2 Construction of the Liouville measures

We will now briefly define the “Liouville” measures: that is, the family of multiplicative
chaos measures corresponding to the 2D Gaussian free field.

2.2.1 Subcritical regime

When γ < 2, the construction and properties of these measures are now rather well
understood (see, for example, reviews [Ber17, RV16, Aru17]). The standard construction
goes as follows. Let ρ : C→ [0,∞) be a smooth function of unit mass, supported on the
unit disc, and for z ∈ D and ε > 0, set ρεz(w) := ε−2ρ(ε−1(w − z)), so that Γε(z) := (Γ, ρεz)

is an approximation to Γ. Define the corresponding sequence of approximate measures

µγε (dz) := eγΓε(z) εγ
2/2 dz. (2.2)

The chaos measure µγ is then defined by taking a limit of these measures as ε→ 0.

Theorem 2.4. [DS11, RV10, Ber17] For γ < 2 the measures µγε converge to a non-trivial
measure µγ weakly in probability. Moreover, for any fixed Borel set O ⊆ D we have that
µγε (O) converges in L1 to µγ(O).

This measure is also unique, in the sense that the same limit is obtained if one
replaces Γε with any (nice enough) mollifier approximation to Γ.

In [APS17], it was shown that µγ for γ < 2 can alternatively be constructed using the
local sets of Γ. In this paper, we will use the explicit construction using first passage
sets: for n ∈ N and γ ≥ 0, we define the measures

Mγ
n (dz) := eγn CR(z,D \An)γ

2/2 dz (2.3)

where An is the n-FPS of Γ, and for z ∈ D, CR(z,D \ An) is the conformal radius seen
from z of the connected component of D \An containing z.

Theorem 2.5. [APS17, Proposition 4.1] For γ < 2, almost surely as n → ∞, Mγ
n con-

verges to µγ with respect to the weak-topology of measures. Moreover, for any O ⊂ D,
Mγ
n (O) is a martingale that converges almost surely and in L1 to µγ(O). Furthermore,

the law of µγ(O) given An is that of

eγn
∑

D′∈An

µ̃γD′(O ∩D
′), (2.4)

where An is the set of connected components of D\An and (µ̃D′)D′∈An is a sequence of
(conditionally) independent Liouville measures in (D′)D′∈An .
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Let us remark that such a simple construction of the Liouville measure was first
proposed (but not proved) in [Aïd15].

2.2.2 Critical regime

For γ ≥ 2 it is known, [RV10, APS17], that the approximate measures (2.2) and (2.3)
converge to the zero measure almost surely. Thus, to obtain a non-trivial limit in these
cases one must renormalise differently. We concern ourselves here only with the critical
case γ = 2.

In this case there are two procedures that one can use to obtain a non-trivial limit
[DRSV14a, DRSV14b]. The first is a deterministic renormalisation, known as the Seneta–
Heyde rescaling, where one considers the sequence of measures either√

log(1/ε)µγ=2
ε or

√
nMγ=2

n (2.5)

depending on whether you want to approximate using mollifiers or local sets. The second
is a random “derivative” normalisation, where one considers the sequence of measures
either

Dε(dz) := (−Γε(z) + 2 log(1/ε)) e2Γε(z) ε2dz or (2.6)

Dn(dz) := (−n+ 2 log CR−1(z,D \An)) e2n CR(z,D \An)2dz.

It is now known that all the above approximations converge to the same (up to a
constant) limiting measure. The following is a combination of results of [DRSV14a,
DRSV14b, HRV15, JS17, Pow18]:

Theorem 2.6. The sequence of measures Dε converge weakly in probability as ε→ 0 to
a limiting measure µ′. Furthermore,

√
log(1/ε)µγ=2

ε converges weakly in probability to√
2
πµ
′.

Theorem 2.7. [APS17, Proposition 6.4 and Theorem 6.6] The sequence of measures Dn

converge weakly almost surely to µ′ as n→∞. Furthermore, the sequence of measures√
nMγ=2

n converge weakly in probability to 2√
π
µ′.

2.3 Rooted measures

One of the key techniques used to study chaos measures, is to work with certain
“rooted” probability measures. This idea goes back to Peyrière [KP76]. It has been widely
used in the classical “spine” theory of branching processes [BK04], as well as to study
the law of the field plus a “typical” point under the Liouville measure [DS11]. We will
introduce them in the setting of FPS, as employed in [APS17].

We define, for γ ≥ 0, a probability measure on the field Γ plus a distinguished point
Z, by

P̂∗γ(dΓ, dz)
∣∣∣
F∗n

:=
eγn CR(z,D \An)γ

2/2∫
D

CR(x,D)γ2/2 dx
P(dΓ) dz, (2.7)

where F∗n := σ(Z) ∨ σ(An), and set P̂∗ := P̂∗2 (this is the measure we will work with most
often). We make the following straightforward observations concerning the law of the
random variables Γ and Z under P̂∗γ :

• The marginal law of the field Γ restricted to σ(An) is given by (Mγ
0 (D))−1Mγ

n (D)P(dΓ)

and is absolutely continuous w.r.t the law of the GFF.

• The marginal law of the point Z has density (w.r.t Lebesgue measure)∝ CR(z,D)γ
2/2.

• Conditionally on An, the point Z is chosen proportionally to Mγ
n (dz).
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Slightly less immediate is the following description of the conditional law of the field
given the point Z, see for example [Aru17, Lemma 2.1] for a proof of the following
statement, which concerns the subcritical regime:

Lemma 2.8. For γ ∈ (0, 2), one can sample from P̂∗γ by first sampling the point Z

proportionally to CR(Z,D)γ
2/2, and then sampling the field according to the law of

Γ + γGD(Z, ·). We write P̂∗γ,z for the law of Γ + γGD(z, ·).
This lemma tells us roughly that, for γ < 2, the GFF around a typical point sampled

from the Liouville measure has an additional γ singularity. In the case of the FPS
approximation, this is encoded in a certain random walk. More precisely, if under the
conditional law P̂∗γ(·|Z) we set

Sγn = Sγn(Z) := −γn+ γ2 log CR−1(Z,D \An) (2.8)

then Sγn(Z) − Sγ0 (Z) is a centred random walk, the law of whose increments do not
depend on the point Z, and have mean zero and variance γ (see Remark 6.3 of [APS17]).

In fact for us, the most important case is when γ = 2, which is not included in
Lemma 2.8. However, we still know (see [APS17, Section 6]) that under P̂∗ = P̂2 and
conditionally on the point Z, the random walk Sn := S2

n is as described in the previous
paragraph, with γ = 2.

3 Preliminary lemmas

Here, we collect a few slightly technical preliminary lemmas. One may safely skip
this section in the first reading, and only return to them when they appear in the main
proofs.

3.1 Uniform control of Liouville moments

We will need some control on the moments of the subcritical Liouville measures. In
the following we write µγD for the γ-Liouville measure defined from a zero boundary
Gaussian free field on D as in Theorem 2.4.

Lemma 3.1. Let p = p(γ) := 1 + 2−γ
2 . There exists a universal K > 0, such that for

any f : C→ [0, 1], any γ ∈ (1, 2), and any simply connected domain D ⊆ D, if µγD is the
limiting measure associated with a zero boundary GFF Γ on D:

E

[(∫
D

f(z)µγD(dz)

)p]
≤ KArea(D)(p−1)(1+γ2/4)

∫
D

f(z)p CR(z,D)γ
2/2dz.

The key ingredient is a uniform control on (p − 1)-th moments under the rooted
measure, with p as above.

Lemma 3.2. There exists a universal constant C > 0 such that for all γ ∈ (0, 2) and
p = p(γ) := 1 + 2−γ

2 < 2 we have (recalling the definition of Êγ,z from Lemma 2.8)

Ê∗γ,0[µγD(D)p−1] ≤ C.

We will first show Lemma 3.2.

Proof of Lemma 3.2. First, by Lemma 2.8, we can write

Ê∗γ,0[µγD(D)(p−1)] = E

[(∫
D

1

|z|γ2 dµ
γ
D

)p−1
]
. (3.1)

Consider the radial decomposition of Γ, i.e. write (in the sense of distributions) Γ(z)

as B|z|+ Γ^(z), where Br has the law of a standard Brownian motion when parametrized
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by − log r and Γ^ is a log-correlated Gaussian field, whose circle-averages around the
origin are zero (see e.g. [DMS14]). Writing

dµγΓ^(z) := lim
ε→0

eΓ^
ε (z) ε

γ2

2 e
γ2

2 var(B|z|) dz

for the angular GMC measure, we have

E

[(∫
D

1

|z|γ2 dµ
γ
D

)p−1
]

= E

[(∫
D

1

|z|γ2/2
eγB|z|dµγΓ^

)p−1
]
.

By first conditioning onB|z|, using the fact thatE [dµγΓ^(z)] = CR(z,D)γ
2/2dz and Jensen’s

inequality, we can bound the RHS further by a constant times

E

[(∫
D

1

|z|γ2/2
eγB|z|dz

)p−1
]
.

Now for n ∈ N, consider the decomposition of the radial part into intervals of the form

[rn+1, rn] =
[
2−(n+1)(p−1)−2

, 2−n(p−1)−2
]
.

Denote by Rn the corresponding annulus, and observe that:

• B|rn| is a zero-mean Gaussian of variance − log |rn|;
• the maximum of the process Bs − Brn (that is a time-changed Brownian motion)

over the interval s ∈ [rn+1, rn] is a sub-Gaussian of mean bounded by an absolute
constant times (p− 1)−1 and of variance bounded by an absolute constant times
(p− 1)−2;

• (2− γ)−(p−1) → 1.

Thus, there exist a universal constant K > 0 such that

E

[(∫
Rn

1

|z|γ2/2
eγB|z|dz

)p−1
]
≤ Kr(p−1)(2−γ2+γ3/4)

n .

Note that 2 − γ2 + γ3/4 is strictly positive for γ ∈ [0, 2). Thus by the sub-additivity of
xp−1, we have that

E

[(∫
D

1

|z|γ2/2
eγB|z|dz

)p−1
]
≤ K

∑
n≥0

r(p−1)(2−γ2+γ3/4)
n =

K

1− 2−(2−γ2+γ3/4)(p−1)−1 .

Finally, as (2− γ2 + γ3/4)(p− 1)−1 = γ + 2− γ2/2 > 2 for all γ ∈ [0, 2], we can conclude.
�

Let us now prove Lemma 3.1.

Proof of Lemma 3.1. As p < 4/γ2, standard theory of GMC [Kah85] guarantees that
E[(µγD(D))p] is finite for any γ ∈ (0, 2). Now, by Jensen’s inequality we have

E

[(∫
D

f(z)µγD(dz)

)p]
≤ E

[
(µγD(D))p

∫
D

f(z)p
µγD(dz)

µγD(D)

]
, (3.2)

which by definition of the measure Ê∗γ is also equal to
∫
D
CR(w,D)γ

2/2dw times

Ê∗γ

[∫
D

f(z)p
µγD(dz)

µγD(D)
× µγD(D)p−1

]
= Ê∗γ

[
f(Z)pµγD(D)p−1

]
.
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Since the marginal density of Z is proportional to CR(Z,D)γ
2/2, by conditioning on Z

the LHS of (3.2) can be bounded by∫
D

CR(z,D)γ
2/2f(z)pÊ∗γ,z

[
µγD(D)p−1

]
dz.

Now, let Bz be the ball of radius CR(z,D)/8 around z so that Bz ⊂ D. Then, we have
that

Ê∗γ,z[µ
γ
D(D)p−1] ≤ Ê∗γ,z[µ

γ
D(Bz)p−1] + Ê∗γ,z[µ

γ
D(D \Bz)p−1]. (3.3)

Since for y ∈ D\Bz, GD(z, y) is bounded above by some universal constant (by conformal
invariance of the Green’s function and the distortion theorem [Law08, Theorem 3.23]),
the second term in (3.3) can be bounded by a universal constant times

E
[
µγD(D)p−1

]
≤ Area(D)p−1 sup

y∈D
CR(y,D)

γ2

2 (p−1) ≤ 10
γ2

4 (p−1)Area(D)(1+ γ2

4 )(p−1),

where in the second inequality we use that CR(z,D)2 ≤ 10Area(D).
For the first, we apply the scaling and translation map φ : w 7→ 8(w − z)/CR(z,D),

which sends Bz to D and, by the Koebe 1/4-Theorem, D to φ(D) ⊃ 2D. Letting µγφ(D)

denote the Liouville measure associated to a GFF in φ(D), by scaling invariance of the
GFF and the Green’s function we thus see that the first term of (3.3) is less than or equal
to a universal constant times

CR(z,D)(2+γ2/2)(p−1)Ê∗γ,0[µγφ(D)(D)p−1].

This, using again that CR(z,D)2 ≤ 10Area(D) and Kahane’s convexity inequality [Kah85],
can be bounded by a constant times

Area(D)(1+ γ2

4 )(p−1)Ê∗γ,0[µγD (D)
p−1

],

and the claim now follows from Lemma 3.2. �

3.2 A random walk associated to the root

Recall from Section 2.3, that under the conditional law P̂∗(·|Z) if we set

Sn = Sn(Z) := −2n+ 4 log CR−1(Z,D \An) (3.4)

then Sn(Z)−S0(Z) is a simple random walk, whose distribution does not actually depend
on the point Z, and whose increments have mean zero and variance equal to 2 [APS17,
Lemma 6.1, Remark 6.3]. Additionally note that Sn+1 − Sn is always greater than −2,
because the conformal radius is strictly decreasing in n. One can also extract easily from
this proof that (Sn − S0) has exponential moments.

Write Eη(n, z) = {Sk(z) ≥ −2η , 0 ≤ k ≤ n}. We will later need the following lemma
controlling the exponential moments of the conditioned walk:

Lemma 3.3. Fix C > 1 and a deterministic sequence Cn → C. Then there exists c(C) > 0

and n0(C) > 0 such that for any p, n ≥ n0

Ê∗
(

e
CnSn(Z)

2
√
n 1{

Sn(Z)√
n
≥p

}1Eη(n,Z)

∣∣∣∣Z) ≤ c1 + (2η + S0(Z)/
√
n)+

√
n

e−
p
4 e

CS0(Z)√
n (3.5)

This lemma is a direct consequence of a more general lemma, by checking that all
the conditions hold for our random walk Sn. This is the analogue of [Mad16, Lemma
A.2], but we give a different proof.
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Lemma 3.4. Let Xn =
∑n
k=1 yk be a random walk with increments of mean 0 and

variance σ2 such that P(yk < −1) = 0 and E [eεy1 ] < ∞ for some ε > 0. Then, for all C
and Cn → C, there exists c = c(C) and n0(C) > 0 such that for any n > n0, p > 1, a > 0

E

[
e
CnXn√

n 1{
Xn√
n
≥p

}1{infk≤nXk≥−a}

]
≤ (a+ 1)c

e−p/4√
n

(3.6)

Proof. First note that for any m ≤ n and n ≥ (Cn + 1)/ε we have that

E

[
e
CnXm√

n 1{
Xm√
n
≥p

}] ≤ e−pE [e (Cn+1)Xm√
n

]
= e−p

(
E

[
exp

(
(Cn + 1)√

n
X1

)])m
= exp

(m
n

((c+ 1)2σ2/2 + o(n−1/2))− p
)
< c̃(C)e−p, (3.7)

where we have used analyticity of the Laplace transform near 0 in the second line. Now
define τ to be the first time Xn exits [−a,

√
np/(2(Cn+1))]. We can use the strong Markov

property and the fact that Xτ∧n ≥ −(a+ 1), to conclude that

(a+ 1) ≥ E
[
Xτ∧n1{Xτ>√np/(2(Cn+1)),τ≤n}

]
≥

√
np

2(Cn + 1)
P(Xτ >

√
np/(2(Cn + 1)), τ < n)

and thus,
P(Xτ >

√
np/2(Cn + 1), τ < n) = p−1(a+ 1)O(1/

√
n). (3.8)

Using (3.7) we can bound the left hand-side of (3.6) by

E

[
e
CnXτ√

n 1{Xτ>−a,τ≤n}E

[
e
Cn(Xn−Xτ )√

n 1{
Xm−Xτ√

n
≥p−Xτ√

n

} | Fτ
]]

≤ c̃e−pE
[
e

(Cn+1)Xτ√
n 1{Xτ>−a,τ≤n}

]
.

Finally, observe that (Cn + 1)Xτ−1/
√
n is smaller than or equal to p/2. Thus by

separating the cases of yτ greater or less than
√
np/4(Cn + 1), we can further bound the

right hand side by

ce−p/4P(Xτ >
√
np/2, τ ≤ n) + c̃e−p/2E

[
e

(Cn+1)yτ√
n 1{yτ≥√np/4(Cn+1)}

]
By (3.8), the first term is bounded by (a + 1)ce−p/4(

√
np)−1. Moreover, by Cauchy-

Schwarz and the assumption of exponential moments, the second term is smaller than
ce−p/2ne−ε

√
np/2(Cn+1). Thus, the lemma follows. �

3.3 First passage set seen from the root

For a later technical argument we will also need to have some control on the geometry
of first passage sets with respect to the marked point Z under the rooted measures P̂∗γ .
The following lemma comes from [Aïd15].

Lemma 3.5. Set D = D. There exist c, c′ > 0 such that if Dn(Z) is the component of
D \An containing Z, we have

P̂∗γ

(
Area(Dn(Z))

CR(Z,Dn(Z))2
≥ K

)
≤ ce−c

′n +K−c
′

for all γ ∈ (1, 2) and K ≥ 0.

Proof. This statement is part of [Aïd15, Lemma 2.3(iii)]. Uniformity of c, c′ in γ ∈ (1, 2)

is not explicitly stated in this lemma, but it comes directly from the proof. �
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Critical Liouville measure as a limit of subcritical measures

4 Proof of Theorem 1.1

By conformal invariance of the Gaussian free field, we may take D = D. As mentioned
in the introduction, the proof follows closely the strategy in [Mad16, Proof of Theorem
1.1]. However, the presentation is self-contained and some technical details differ.

By a standard argument (e.g. see [APS17, Remark 4.3]), Theorem 1.1 follows, once
we show that for every O ⊆ D

µγ(O)

2− γ
→ 2µ′(O)

in probability, as γ ↗ 2.
This in turn follows from a diagonal argument: we will define below an approximation

speed n(C, γ) such that on the one hand the level n approximations of µγ converge to
2µ′, and on the other hand the error of the approximations w.r.t µγ go to zero. These
steps are separated into two lemmas:

Lemma 4.1. For any O ⊆ D

lim
C→∞

lim
γ→2−

Mγ
n(C,γ)(O)

2− γ
= 2µ′(O)

where the limit is in P-probability.

Lemma 4.2. For any O ⊆ D and ε > 0

lim sup
C→∞

lim sup
γ→2−

P

(∣∣∣∣∣M
γ
n(C,γ)(O)− µγ(O)

2− γ

∣∣∣∣∣ > ε

)
= 0

It turns out that the right choice of n(C, γ) is given by

n(C, γ) :=

⌊(
C

2− γ

)2
⌋
, (4.1)

and that it is also necessary to include the dependence on the extra parameter C. Before
going to the proof, let us try to briefly discuss this choice.

Let us first consider (2 − γ)−1Mγ
n (D) to see which choices of approximation level

n = n(γ) could possibly give us the right limit. Notice that for γ < 2 we can write

Mγ
n (D)

2− γ
=

1

2− γ

∫
D

e(γ−2)n CR(z,D \An)
γ2

2 −2M2
n(dz)

Now, we know from Theorem 2.7 that we have to multiply the measures M2
n(dz) by

√
n

in order to converge to a multiple of the critical measure. Thus, forgetting about the
first terms in the integrand, it seems that in order to obtain a non-trivial limit we should
pick n(γ) ∝ (2− γ)−2.

So, let us consider n(γ) = n(C, γ) = b(C/(2 − γ))2c for some C > 0. In the proof of
Lemma 4.1, we will see that as γ → 2 the measures (2−γ)−1Mγ

n converge to c1(C)×µ′ for
some C−dependent constant c1(C). This hints that for any fixed C, the error introduced
when approximating (2 − γ)−1µγ by (2 − γ)−1Mγ

n with n = n(γ,C) does not go to 0 as
γ → 2. Taking the extra limit C →∞ allows us to control this error.

Remark 4.3. Finally, let us comment on the slightly surprising factor of 2. Essentially
the reason is the same as that given in [Mad16, below Theorem 1.1], but we explain it
here in our context.

We saw in Section 2.3 that for a typical point z = Z sampled from the measure µγ

Sγn(z) = −γn+ γ2 log CR−1(z,D \An) (4.2)
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Critical Liouville measure as a limit of subcritical measures

is a mean zero random walk. Now for any γ ∈ [0, 2], we decompose the GMC measure
according to the sign of the walk

Mγ
n (dz) := Mγ

n (dz)1{Sγn(z)≥0} +Mγ
n (dz)1{Sγn(z)≤0},

and denote the summands respectively by Mγ,+
n (dz) and Mγ,−

n (dz). Decompose similarly
the derivative martingale

D±n (dz) = −∂γ |γ=2M
γ,±
n (dz).

The origin of the factor 2 can now be explained by the following observations:

• For γ < 2, both Mγ,+
n and Mγ,+

n converge to some non-trivial measures Mγ,+ and
Mγ,−as n→∞. Moreover Mγ,+ +Mγ,− = µγ .

• For the derivative martingale, however, limn→∞D−n = 0, whereas limn→∞D+
n = µ′

(see [APS17] for an explanation; for the same reason that M2
n → 0 as n → ∞ we

see that the limit of Dn is supported only where Sn is large). Thus, µ′ is only the
limit of the derivatives of M+

n as n→∞.

• Finally, µ′ is the limit of both the derivatives of Mγ,+ and Mγ,−, i.e.

lim
γ→2−

(2− γ)−1Mγ,+ = lim
γ→2−

(2− γ)−1Mγ,− = µ′.

Indeed, this follows from a direct calculation, after observing that in the proof of

Lemma 4.1 the term E
[
e
C√
2
R1

]
will be replaced by

E
[
e
C√
2
R1 1{C/√2≤R1}

]
and by E

[
e
C√
2
R1 1{R1≤C/

√
2}
]
,

when considering Mγ,+ or Mγ,−, respectively.

In other words, the factor 2 originates from the fact that taking the limit as n→∞ and
taking the derivative in γ do not commute: when one first takes the derivative and then
the limit n→∞, the contribution of ∂γ |γ=2 M

γ,− disappears.

Proof of Lemma 4.1. From now on, we work for simplicity in the case O = D and also
write n = n(C, γ) to try and keep notations compact.

Our main input is [APS17, Theorem 6.7], which says that for any positive, continuous
bounded function F on D

√
n

Dn(D)

∫
D

e2n−2l(z,n) F

(
Sn(z)√

n

)
dz →

√
4

π
E
[
F (
√

2R1)
]
. (4.3)

as n→∞ in probability. Here l(z, n) := log CR−1(z,D \An), Sn(z) := −2n+ 4l(z, n) and
R1 has the law of a Brownian meander at time 1.

We will aim to write (2 − γ)−1Mγ
n in a similar form. First, by the definition of

n = n(C, γ) in (4.1), we can write

Mγ
n (D)

2− γ
= Dn(D)× 1

C
×
√
n(1 + o(1))

Dn(D)

∫
D

e2n−2l(z,n) e(γ−2)n−( γ
2

2 −2)l(z,n) dz

where by o(1) we mean a deterministic function of γ (possibly depending on C) that
converges to 0 as γ → 2 and that comes from the fact that C2(2 − γ)−2 may not be an
integer. Substituting now Sn(z) := −2n+ 4l(z, n), we further rewrite this as

(1 + o(1))×Dn(D)× e−
C2

4

C
×
√
n

Dn(D)

∫
D

e2n−2l(z,n) e
C
2
Sn(z)√

n
(1+o(1))

dz. (4.4)
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Critical Liouville measure as a limit of subcritical measures

This already looks very much like (4.3); however there are some error terms, and
moreover, the function x 7→ eCx/2 is not bounded. To get around this, we truncate the
exponential and control the error. For fixed p > 0, approximating the indicator functions
1{x≤p} by continuous functions 3, it follows from (4.3) that

√
n

Dn(D)

∫
D

e2n−2l(z,n) e
C
2
Sn(z)√

n 1{
Sn(z)√

n
≤p

} dz
converges in probability as γ → 2− (and therefore n→∞) to√

4

π
E
[
e
C√
2
R1 1{R1≤p}

]
.

Since the o(1) is deterministic, the same then also holds for
√
n

Dn(D)

∫
D

e2n−2l(z,n) e
C
2 (1+o(1))

Sn(z)√
n 1{

Sn(z)√
n
≤p

} dz.
But now for any fixed C > 0, we have

lim
p→∞

E
[
e
C√
2
R11{R1≤p}

]
= E

[
e
C√
2
R1

]
and one can verify by hand that E

[
emR1

]
∼
√

2πmem
2/2 as m → ∞ (see for example

[Mad16, above equation (4.6)]). Therefore, since we know from Theorem 2.7 that
Dn(D)→ µ′(D) almost surely as n→∞, we can conclude that

Dn(D)× e−
C2

4

C

√
n

Dn(D)

∫
D

e2n−2l(z,n) e
C
2 (1+o(1))

Sn(z)√
n 1{

Sn(z)√
n
≤p

} dz
converges to 2µ′(D) in probability, as n→∞ and then p→∞.

Thus, it remains to show that for fixed C,

√
n

∫
D

e2n−2l(z,n) e
C
2
Sn(z)√

n
(1+o(1))

1{
Sn√
n
>p

} dz (4.5)

converges to 0 in probability as γ → 2− and then p → ∞. Fix ε > 0, and recall the
definition of the event Eη(n, z) = {Sk(z) ≥ −2η , 0 ≤ k ≤ n}. Let Cη = ∩n,zEη(n, z). We
now bound

P

(√
n

∫
D

e2n−2l(z,n) e
C
2
Sn(z)√

n
(1+o(1))

1{
Sn√
n
>p

} dz > ε

)
(4.6)

by the sum of P
(
Ccη
)

and

P

(
Cη ∩

{√
n

∫
D

e2n−2l(z,n) e
C
2
Sn(z)√

n
(1+o(1))

1{
Sn√
n
>p

} dz > ε

})
.

By the Markov inequality and the fact that Cη ⊂ ∩zEη(n, z), the second term is less than

√
n

ε
E

[∫
D

e2n−2l(z,n) e
C
2
Sn(z)√

n
(1+o(1))

1{
Sn√
n
>p

}1Eη(n,z) dz

]
. (4.7)

Moreover, by definition of the law P̂∗, we see that the expectation in (4.7) is equal to a
deterministic constant times

Ê∗
(
e
C
2
Sn(Z)√

n
(1+o(1))

1{
Sn(Z)√

n
>p

}1Eη(n,Z)

)
,

3by say Fm(x) = e
Cx
2 (1{x≤p−2−m} + (1− 2m(x− p+ 2−m))1{p−2−m≤x≤p})
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Critical Liouville measure as a limit of subcritical measures

which by Lemma 3.3 is less than or equal to

Ê∗
(
c
1 + (2η + S0(Z))+

√
n

e−
p
4 e

CS0(Z)√
n

)
for n large enough and for some c(C) > 0. Using that Z is chosen proportionally to
CR(Z,D)2 under P̂∗ we can deduce that for every η > 1 and n large enough, (4.7) is less
than a deterministic constant times η e−p/4 /ε for every fixed p. Thus, we can bound (4.6)
by a deterministic constant times

P
(
Ccη
)

+
η

ε
e−p/4 .

By [APS17, proof of Proposition 6.4] P(Cη)→ 1 as η →∞ and thus by choosing first η
large, we can make the first term as small as we wish. Then, uniformly in large n by
choosing p large, we can also make the second term arbitrarily small. From here the
claim follows. �

Proof of Lemma 4.2. Again we write n = n(γ,C), and assume that O = D. We now
use the decomposition (2.4), and further separate each component D′ ∈ An into two
parts: the points z around which the area of the disk B(z, d(z,D′)) is comparable to
Area(D′), and the points where Area(D′) is much bigger. More precisely, define

Az,γ = {Area(Dn(z)) ≤ 21/(p−1) CR(z,Dn(z))2},

where by Dn(z) we denote the component D′ ∈ An containing z and take p = 1+(2−γ)/2

as in Lemma 3.1. The reason for choosing this comparison will be clear from the proof.
We now bound |(Mγ

n (D)− µγ(D))/(2− γ)| by the sum of∑
D′∈An

∫
D′

1Acz,γ

(
eγn−

γ2

2 l(z,n) dz + eγn µ̃γD′(dz)
)

2− γ
(4.8)

and ∑
D′∈An

∣∣ ∫
D′

1Az,γ (eγn−
γ2

2 l(z,n) dz − eγn µ̃γD′(dz))
∣∣

2− γ
. (4.9)

We begin by showing that (4.8) converges to 0 in L1 as γ → 2−, for any fixed C.
Indeed, by first conditioning on An, we see that the expectation of this term is less than
or equal to

2

2− γ
E

[∫
D

eγn−
γ2

2 l(z,n) 1Acz,γ dz

]
=

2

2− γ
P̂∗γ(AcZ,γ)

which by Lemma 3.5 is bounded above by

2

2− γ
(
ce−c

′b( C
2−γ )2c + 2−

c′
2(2−γ)

)
for some c, c′ > 0. This nicely converges to 0 as γ → 2−.

Now, we deal with (4.9). The idea is to use the scaling of p-th moments, with
p = 1 + (2− γ)/2 > 1 as before. To do this denote the whole expression (4.9) by Yγ,C . Fix
ε > 0. Then for any δ > 0 we can write

P(Yγ,C > ε) ≤ P(E
[
Y pγ,C | An

]
> εpδ) + P({Y pγ,C > εp} ∩ {E

[
Y pγ,C |An

]
≤ εpδ})

where by the Markov inequality, the second term is less than δ.
Thus, since we can take δ arbitrarily small, it is sufficient to prove that

lim supC→∞ lim supγ→2− P
(
|E
[
Y pγ,C | An

]
| ≥ ε

)
= 0 for any ε > 0.
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Critical Liouville measure as a limit of subcritical measures

A nice idea from [Mad16] is to now apply the following classical inequality from
[vBE65], saying that for any sequence (Xi)i∈N of independent centered random variables
and any q ∈ [1, 2]:

E
[
|
∑

Xi|q
]
≤ 2q

∑
E [|Xi|q] .

Applying this to the conditional probability E [· | An] and with q = p, we see that
E
[
Y pγ,c | An

]
is less than or equal to(

2

2− γ

)p ∑
D∈D\An

eγnp
((∫

D

CR(z,D)γ
2/21Az,γ dz

)p
+ E

[(∫
D

1Az,γ µ̃
γ
D(dz)

)p
|FAn

])
.

By using the deterministic inequality CR(z,D)2 ≤ 10Area(D) we have(∫
D

CR(z,D)γ
2/21Az,γ dz

)p
≤ 10Area(D)(1+γ2/4)(p−1)

∫
D

CR(z,D)γ
2/21Az,γ dz,

and by Lemma 3.1 we can bound E
[(∫

D
1Az,γ µ̃

γ
D(dz)

)p |FAn] by

KArea(D)(p−1)(1+ γ2

4 )

∫
D

eγnp CR(z,D)
γ2

2 1Az,γ dz.

Thus the whole expression by some universal constant times(
2

2− γ

)p ∑
D∈D\An

Area(D)(p−1)(1+γ2/4)

∫
D

eγnp CR(z,D)
γ2

2 1Az,γ dz,

which, since 1Az,γ
Area(D)p−1

CR(z,D)2p−2 ≤ 2, is in turn less than four times(
2

2− γ

)p ∫
D

eγnp−( γ
2p
2 +2p−2)l(z,n) dz.

Now we choose γ̃(γ) such that γ̃2

2 = γ2p
2 + 2p− 2. A direct calculation yields that

• γnp− γ̃n = −C2(1 + o(1))/4;
• (2− γ̃)/(2− γ) =: e(γ)→ 1 as γ → 2−; and
• (2− γ)p−1 → 1 as γ → 2−.

Thus,

lim
C→∞

lim sup
γ→2−

(
2

2− γ

)p ∫
D

eγnp−( γ
2

2 p+2p−2)l(z,n) dz

= lim
C→∞

lim sup
γ→2−

2e(γ)

2− γ̃
M γ̃⌊

C2e(γ)2

(2−γ̃)2

⌋(D) e−
1
4C

2

where the limits are in probability. Thanks to Lemma 4.1, this is bounded by

4µ′(D) lim
C→∞

e−1/4C2

/C = 0.

�

4.1 Extensions

In this section, we will shortly discuss how our results can be extended to the
boundary Liouville measure and to the case of the Liouville measure for the Neumann
GFF. Our results can be also easily extended to the case of quantum surfaces like
quantum wedges, quantum disks or quantum spheres introduced in [She10, DMS14],
but this will be discussed elsewhere for the brevity of this note [AP18]. Given our aim of
leaving this a short note, we will not define any of the terms in detail, but rather refer to
[Ber15] for the Neumann GFF and to [DS11], for the boundary Liouville measure.
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Critical Liouville measure as a limit of subcritical measures

4.1.1 Liouville measure for the Neumann GFF

We refer the reader to [Ber15] for a definition and disussion on the Neumann GFF. The
adaption to (any version of the) Neumann GFF follows by writing the Neumann GFF as a
sum of an Dirichlet GFF and the harmonic extension h of an independent log-correlated
Gaussian field on the boundary. Notice that this harmonic extension is defined pointwise
in the interior of the domain. Whereas the harmonic extension blows up when reaching
the boundary, one can check that mγ(dz) := eγh(z)dz still defines an a.s. finite measure
on the domain for all γ ∈ [0, 2] [HRV15]. In particular, as mγ(dz)→ m2(dz) as γ → 2, the
case of the Neumann GFF follows from the case of the Dirichlet GFF, when the chaos
measures are defined with a different choice of base measure.

4.1.2 Boundary Liouville measure

We refer to [DS11], for discussion of the boundary Liouville measure. The most important
application is the extension of the Fyodorov-Bouchaud formula [Rem17] to the critical
case. So for clarity, let us see how our results can be extended to this particular
case, where the underlying Gaussian field is defined on the unit circle, with covariance
−2 log ||x − y||2. In fact, it is easier to generalize our argument first to the case of
boundary measures associated with a Neumann-Dirichlet GFF (on the “Neumann” part
of the boundary), and then to conclude the result for the circular boundary measure
above, by absolute continuity.

So let us discuss the case of the Neumann-Dirichlet GFF. It was already explained in
[APS17], Section 5, how to extend our construction of the Liouville measure using FPS
to this boundary measure. However, this was only done in the subcritical regime.

The first step in adapting the proof therefore, is to provide a construction of the
critical boundary measure using the boundary equivalent of the first passage sets. These
boundary-FPS are discussed in Section 5 of [APS17] and their behaviour is completely
analoguous to the normal FPS. In fact, via the boundary-FPS, the proofs in Section 6 of
[APS17] will work essentially word-for-word to prove that one can construct a critical
boundary measure using the derivative martingale and using a Seneta-Heyde scaling,
and that these constructions agree (up to explicit constants) with the critical boundary
measure as constructed using semi-circle averages of the field 4. One only needs to
replace the relevant definitions for sets, conformal radius etc, exactly as done in Section
5 of [APS17] for the subcritical case. For clarity, we also list here the external inputs to
Section 6, and how they extend to the critical case:

• Lemmas 2.3 and 3.5 from the article [Aïd15]. One can check that these also hold for
the boundary-loops; the arguments are based on the iterative nature of conformal
loop ensembles and their conformal invariance, both of which hold for the boundary
loop ensembles.

• Theorem 1.1 from the article [Pow18], which says that the critical Liouville measure
for a Dirichlet GFF in the bulk ([DKRV16, JS17]) can equivalently be constructed
using the “derivative martingale” defined via circle averages of the field. The proof
in [Pow18] directly adapts to the setting of boundary measures for the Neumann–
Dirichlet GFF. Indeed, the argument is based around certain changes of measure for
the Brownian motions arising from circle averages of the Dirichlet GFF in the bulk,
and when one instead considers semi-circle averages of the Neumann–Dirichlet
GFF on the boundary, these remain Brownian motions. The only change is that they
have speed 2. Thus, one obtains that the boundary derivative martingale defined

4in the Seneta–Heyde scaling, this is [HRV15, Theorem 4.1]
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Critical Liouville measure as a limit of subcritical measures

using semi-circle averages of the Neumann–Dirichlet GFF gives an equivalent
construction of the critical boundary measure defined in [HRV15, Theorem 4.1].

• Proposition 3.6 from [Pow18]. This states that certain cut-off versions of the (bulk)
derivative martingale are uniformly integrable. For the same reason as above the
proof extends directly to give the equivalent result for the boundary derivative
martingale.

The second, and final, step is to adapt the proof of the current article to the Dirichlet–
Neumann case. Again, this goes through word-for-word when one replaces the relevant
definitions appropriately.
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