Open Access
2014 Some limit results for Markov chains indexed by trees
Peter Czuppon, Peter Pfaffelhuber
Author Affiliations +
Electron. Commun. Probab. 19: 1-11 (2014). DOI: 10.1214/ECP.v19-3601

Abstract

We consider a sequence of Markov chains $(\mathcal X^n)_{n=1,2,...}$ with $\mathcal X^n = (X^n_\sigma)_{\sigma\in\mathcal T}$, indexed by the full binary tree $\mathcal T = \mathcal T_0 \cup \mathcal T_1 \cup ...$, where $\mathcal T_k$ is the $k$th generation of $\mathcal T$. In addition, let $(\Sigma_k)_{k=0,1,2,...}$ be a random walk on $\mathcal T$ with $\Sigma_k \in \mathcal T_k$ and $\widetilde{\mathcal R}^n = (\widetilde R_t^n)_{t\geq 0}$ with $\widetilde R_t^n := X_{\Sigma_{[tn]}}$, arising by observing the Markov chain $\mathcal X^n$ along the random walk. We present a law of large numbers concerning the empirical measure process $\widetilde{\mathcal Z}^n = (\widetilde Z_t^n)_{t\geq 0}$ where $\widetilde{Z}_t^n = \sum_{\sigma\in\mathcal T_{[tn]}} \delta_{X_\sigma^n}$ as $n\to\infty$. Precisely, we show that if $\widetilde{\mathcal R}^n \Rightarrow{n\to\infty} \mathcal R$ for some Feller process $\mathcal R = (R_t)_{t\geq 0}$ with deterministic initial condition, then $\widetilde{\mathcal Z}^n \Rightarrow{n\to\infty} \mathcal Z$ with $Z_t = \delta_{\mathcal L(R_t)}$.

Citation

Download Citation

Peter Czuppon. Peter Pfaffelhuber. "Some limit results for Markov chains indexed by trees." Electron. Commun. Probab. 19 1 - 11, 2014. https://doi.org/10.1214/ECP.v19-3601

Information

Accepted: 11 November 2014; Published: 2014
First available in Project Euclid: 7 June 2016

zbMATH: 1334.60036
MathSciNet: MR3283608
Digital Object Identifier: 10.1214/ECP.v19-3601

Subjects:
Primary: 60F15
Secondary: 60F05

Keywords: empirical measure , random measure , tightness , Tree-indexed Markov chain , weak convergence

Back to Top