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Abstract

We consider a sequence of Markov chains (Xn)n=1,2,... with Xn = (Xn
σ )σ∈T , indexed

by the full binary tree T = T0 ∪ T1 ∪ . . . , where Tk is the k-th generation of T . In
addition, let (Σk)k=0,1,2,... be a random walk on T with Σk ∈ Tk and R̃n = (R̃nt )t≥0

with R̃nt := XΣ[tn]
, arising by observing the Markov chain Xn along the random

walk. We present a law of large numbers concerning the empirical measure pro-
cess Z̃n = (Z̃nt )t≥0 where Z̃nt =

∑
σ∈T[tn]

δXnσ as n → ∞. Precisely, we show that if

R̃n n→∞
===⇒ R for some Feller process R = (Rt)t≥0 with deterministic initial condition,

then Z̃n n→∞
===⇒ Z with Zt = δL(Rt).
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1 Introduction

In [2], Benjamini and Peres introduced the notion of a tree-indexed Markov chain.
Since then, a lot of effort has been spent in studying weak and strong laws of large
numbers for very general types of and even possibly random trees [3, 5, 6, 9, 12, 13, 18,
19, 20].

Our work is motivated by an observation in microbiology, where a population of
bacteria is growing (along a binary tree, say), and every individual bacterial cell is in
a certain state (e.g. some gene expression profile), which can be – at least partially
– inherited. It has been observed for a long time that such populations tend to be
heterogeneous although all cells carry the same genome; see [16] for an early reference.

The question which has arisen is about the mechanisms which are responsible for
such phenotypic heterogeneity. Two competing views exist: either, random fluctuations
lead to heterogeneity [8, 14] or social interactions of cells together with a regulatory
mechanism are key drivers for heterogeneity [15, 17]. Several examples are today known
to fall in one of the two categories; see the review of Avery [1].

In this manuscript, we analyse one consequence of the first view, i.e. a law of large
numbers. This results entails that the dynamics of single cells can be stochastic while
the behavior of the whole population becomes deterministic. We will define a Markov
kernel dependent on some scaling parameter n (which will tend to infinity) and look at
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the empirical measure process in the [nt]-th generation of the population, t ≥ 0, which
corresponds to a time-scaling of the process of empirical measures. We will prove the
weak convergence of the empirical measure process, which will be a deterministic limit
(if the initial distribution is deterministic).

After presenting the general setup in Section 2, we present our main result in
Theorem 3.3 in Section 3, together with two simple examples. Then, we give the proof of
Theorem 3.3 in Section 4.

2 Setup

Let

T =

∞⋃
k=0

Tk, T0 = {∅}, Tk = {0, 1}k, k = 1, 2, . . .

be a complete binary tree, rooted at ∅ ∈ T0, where σ0, σ1 ∈ Tk+1 are the two children of
σ ∈ Tk, k = 0, 1, 2, . . . For σ ∈ Tk and j ≤ k, we denote by πjσ the prefix of σ of length
j. On T , we set |σ| = k iff σ ∈ Tk and in addition, set π−1σ := π|σ|−1σ, the immediate
ancestor of σ. Define the ≤-relation by writing

σ ≤ τ iff there is j such that πjτ = σ

and

τ ∧ τ ′ := sup{σ : σ ≤ τ, σ ≤ τ ′}

as the most recent common ancestor of τ and τ ′.

Let (E, r) be a complete and separable metric space, and denote by B(E) the Borel-
σ-field, or the set of bounded measurable functions (with an abuse of notations). A
stochastic process X = (Xσ)σ∈T is called a time-homogeneous, tree-indexed Markov
chain (extending a notion introduced in [2]), if there is a Markov transition kernel p from
E to B(E2) (the Borel-σ-field on E2) such that for all σ ∈ T and A0, A1 ∈ B(E),

P(Xσ0 ∈ A0, Xσ1 ∈ A1 |Xσ = xσ, Xτ = xτ for τ ∈ T with τ ∧ σ < σ)

= P(Xσ0 ∈ A0, Xσ1 ∈ A1 |Xσ = xσ) = p(xσ, A0 ×A1).

With X , we connect the Markov chain R = (Rn)n=0,1,2,..., with transition kernel

pR(x,A) := 1
2 (p(x,A× E) + p(x,E ×A)).

Here, R arises from observing the state of X when walking along T starting from the
root from σ to σ0 and σ1 purely at random. Another representation of R is as follows:
Let (Σk)k=0,1,2,... be a symmetric forward random walk on T (independent of X ), i.e.
Σk ∈ Tk almost surely and P(Σk+1 = σ0 |Σk = σ) = P(Σk+1 = σ1 |Σk = σ) = 1

2 . Then,

R d
= (XΣk)k=0,1,2,....

If (Xσ)σ∈T is a (time-homogeneous) Markov chain, we then define the process of
empirical measures Z = (Zk)k=0,1,2,... through

Zk := 2−k
∑
σ∈Tk

δXσ .

Note that Z takes values in P(E), the set of probability measures on B(E) and that Z is
a non-homogeneous Markov chain (indexed by k = 0, 1, 2, . . . ).
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Remark 2.1 (Symmetric, tree-indexed Markov chains). The idea to consider different
transition mechanisms to the two different children comes from the work of [9]. A
special, classical case is that of a symmetric tree-indexed Markov chain as follows:

We call a time-homogeneous, (tree-indexed) Markov chain with transition kernel p
(from E to B(E2)) symmetric, if there is a Markov transition kernel q (from E to B(E))
such that for all x ∈ E, A0, A1 ∈ B(E)

p(x,A0 ×A1) = q(x,A0) · q(x,A1).

In other words, the transitions from Xσ to Xσ0 and to Xσ1 are independent. In this case,

we have that Rk
d
= Xσ for all σ ∈ Σk.

In the next section, we will deal with a sequence (Xn)n=1,2,... of tree-indexed Markov
chains.

3 Results

Now, we state our main limit theorem for the setup given in the last section. Therefore,
let (Xn)n=1,2,... be a sequence of tree-indexed Markov chains with complete and separable
metric state spaces (En, rn)n=1,2,.... As a limiting state space, we have a complete
separable metric space (E, r) and Borel-measurable maps ηn : En → E.

Let Rn be the process of observing Xn when moving randomly along the tree.
We denote the corresponding transition kernel by pn (for Xn) and pRn , respectively.
Moreover, let Zn be the process of empirical measures based on Xn, which has state
space P(En), n = 1, 2, . . . Our goal is to find sufficient conditions for Xn (via Rn), such
that the process of empirical measures Zn converges, and to characterize the limit
process. We first recall some basic notation.

Remark 3.1 (Notation). Throughout the manuscript, we will consider a complete and
separable metric space (E, r). The space of (continuous,) real-valued, bounded functions
on E are denoted by B(E)(Cb(E)). Weak convergence is denoted by⇒. If f : [0,∞)→ E1

and η : E1 → E2, we write, abusing notation, η◦f = η(f) for the function η◦f : t 7→ η(f(t))

If (E1, r1), (E2, r2) are two metric spaces, η : E1 → E2 is measurable, and ν ∈ P(E1),
we define the image measure of ν under η by η∗ν ∈ P(E2), i.e. η∗ν(A2) = ν(η−1(A2)).
Sometimes, we write 〈z, ϕ〉 :=

∫
ϕdz for z ∈ P(E) and ϕ ∈ B(E). For f ∈ Cb(E) we write

‖f‖ := supx∈E |f(x)|.
We need two more notions.

Definition 3.2 (Feller property, compact containment condition). Recall that (E, r) is
complete and separable.

1. A Markov process X = (Xt)t≥0 with state space E and càdlàg paths satisfies

the Feller property, iff (i) Xt
t→0
==⇒ X0 and (ii) the map x 7→ E[f(Xt) |X0 = x] is

continuous for all f ∈ Cb(E), t ≥ 0 and all x ∈ E. Equivalently, let (St)t≥0 be the
semigroup of X , i.e. Stf(x) = E[f(Xt) |X0 = x]. Then, X is a Feller-process iff
(St)t≥0 is a Feller semigroup.

2. A Feller semigroup is a family of operators (St)t≥0, St : Cb(E) → Cb(E) with (i)

Stf(x)
t→0−−−→ f(x) for all x ∈ E and f ∈ Cb(E) and (ii) Stf ∈ Cb(E) if f ∈ Cb(E). We

say that (iii) (St)t≥0 is a contraction iff ‖Stf‖ ≤ ‖f‖ and (iv) (St)t≥0 is strongly

continuous iff ‖Stf − f‖
t→0−−−→ 0.

We say that an operator G : D(G) ⊆ Cb(E)→ Cb(E) generates a strongly continuous
semigroup (St)t≥0 if

Gf(x) := lim
t→0

1
t (Stf(x)− f(x)) (3.1)
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for all f ∈ Cb(E) for which the limit in (3.1) exists.
Recall that for the generator G of a Feller semigroup, the domain D(G) is dense
in Cb(E) (with respect to the topology of uniform convergence on compacta) ([7,
Corollary 1.1.6]), and if (E, r) is locally compact, every Feller semigroup is a
strongly continuous contraction semigroup ([11, Theorem 17.6]) and is uniquely
characterized by its generator ([11, Lemma 17.5])

3. For a sequence (X1
t )t≥0, (X

2
t )t≥0, . . . of E-valued stochastic processes, we say that

the compact containment condition (in E) holds, if for every ε > 0 and T ≥ 0 there
is a compact set Kε,T ⊆ E such that

sup
n=1,2,...

P(Xn
t ∈ Kc

ε,T for all 0 ≤ t ≤ T ) < ε.

Now we can formulate our main result.

Theorem 3.3 (Convergence of Zn). Let Xn,Rn,Zn be as above, n = 1, 2, . . . Moreover,
let R̃n := (R̃nt )t≥0 := (Rn[nt])t≥0, and Z̃n := (Z̃nt )t≥0 := (Zn[nt])t≥0, n = 1, 2, . . . Assume

that ηn(Xn
0 )

n→∞
===⇒ ν ∈ P(E) and that the compact containment condition holds for

η1(R̃1), η2(R̃1), . . .

In addition, assume that there is a linear operator GR : D(GR) ⊆ Cb(E) → Cb(E),
which generates a strongly continuous contraction semigroup, and such that D(GR)

contains an algebra Π that separates points. For each ϕ ∈ D(GR), there is a sequence
ϕ1 ∈ B(E1), ϕ2 ∈ B(E2), . . . such that supn=1,2,... ‖ϕn‖ <∞ and

lim
n→∞

sup
x∈En

|ϕ ◦ ηn(x)− ϕn(x)| = 0, (3.2)

lim
n→∞

sup
x∈En

|(GRϕ) ◦ ηn(x)−GR̃nϕn(x)| = 0, (3.3)

where

GR̃nϕ(x) := n ·E[ϕ(R̃n1/n)− ϕ(R̃n0 ) | R̃n0 = x].

Then, there is an E-valued Feller process R = (Rt)t≥0 with R0 ∼ ν and generator
GR with ηn(R̃n)

n→∞
===⇒ R, and a P(E)-valued stochastic process Z = (Zt)t≥0 such that

ηn∗ Z̃n
n→∞
===⇒ Z with Z0 ∼ δR0

∈ P(P(E)). Moreover, if ν = δx for x ∈ E, then Zt = δL(Rt).

Remark 3.4 (Convergence, Deterministic limit, CLT). 1. Actually, the convergence R̃n◦
ηn

n→∞
===⇒ R was shown in [7, Corollary 4.8.9], under the assumptions given above.

2. As the Theorem shows, the limiting process of empirical measures Z is determinis-
tic (if the initial distribution is a Dirac-measure). The heuristics behind this result is
that two distinct values Xn

σ , X
n
τ with σ, τ ∈ T[nt] have already evolved independently

for O(n) steps. Hence, Z̃nt is approximately given by the empirical measure of 2[nt]

independent processes, which leads to a deterministic limit. This argument will be
made precise below.

3. Having obtained a law of large numbers, it would be interesting to see a central
limit theorem, as well. In the present context, this would require a fine analysis of
the error terms εn appearing in (4.7). We devote this study to future research.

We now give two simple examples for normal and Poisson convergence.

Example 3.5. 1. Let (Yσ)σ∈T be a family of independent, identically distributed ran-
dom real-valued variables with E[Yσ] = 0,Var[Yσ] = 1. Moreover, let Xn

0 := 0

and (Xn
σ0, X

n
σ1) :=

(
Xn
σ + 1√

n
Yσ, Xσ − 1√

n
Yσ
)
. (In other words, the states of the

two children of σ are a pair of dependent random variables.) Then, the process

Rn = (Rnt )t=0,1,2,... can be written as Rnt
d
= 1√

n

∑t−1
k=0 Ỹk, where (Ỹk)k=0,1,2,... are
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independent and identically distributed with (Ỹk)∗P = 1
2 (Yσ)∗P + 1

2 (−Yσ)∗P, a mix-
ture of the distributions of Yσ and −Yσ. Donsker’s Theorem yields the convergence
R̃n n→∞

===⇒ B to the standard Brownian motion B. Our theorem now says that the
limiting process Z is the law of B, so we find that Z = (N(0, t))t≥0, where N(0, t) is
the normal distribution with mean 0 and variance t.

2. Let (Y nσ )σ∈T be a family of independent, identically distributed random variables
with values in Z+ and P(Y nσ > 0) = 2λ/n+ o(1/n),P[Y nσ > 1] = o(1/n). Moreover,
let Xn

0 := 0 and (Xn
σ0, X

n
σ1) :=

(
Xσ, X

n
σ + Y nσ

)
. (In other words, the state of the left

child equals the state of its parent while the state of the right child has a small
probability of having increased by 1.) Then, the process Rn = (Rnt )t=0,1,2,... can

be written as Rnt
d
=
∑t−1
k=0 Ỹ

n
k , where (Ỹ nk )k=0,1,2,... are independent and identically

distributed with (Ỹ nk )∗P = 1
2δ0 + 1

2 (Y nσ )∗P, i.e. P[Ỹ nk > 0] = λ/n + o(1/n),P[Ỹ nk >

1] = o(1/n). Classical convergence results (see e.g. [11, Theorem 5.7]) then show
that R̃n converges weakly to a Poisson process with rate λ. Consequently, we then
have by the above theorem that Z = (Zt)t≥0 with Zt = Poi(λt).

4 Proof of Theorem 3.3

Throughout this section, we build on the same assumptions as in Theorem 3.3. We
will replace ηn(R̃n) by R̃n and ηn∗ Z̃n by Z̃n in the sequel (and similarly for the processes
without ∼). This should not cause confusion and increase readability.

Before we start, we give basic relationships between the processes R̃n and Z̃n, which
we will frequently use. (Some more refined relationships will be given in the proof of
Lemma 4.2. Let ϕ ∈ Cb(E). Then,

E[〈Z̃nt , ϕ〉] = E[〈Zn[nt], ϕ〉] = E
[ 1

2[nt]

∑
σ∈T[nt]

〈δXnσ , ϕ〉
]

= E
[ 1

2[nt]

∑
σ∈T[nt]

ϕ(Xn
σ )
]

= E[ϕ(Rn[nt])] = E[ϕ(R̃nt )].

(4.1)

Similarly, we write

〈Znk , ϕ〉 = 2−k
∑
σ∈Tk

ϕ(Xn
σ ) = E[ϕ(Rnk ) |Znk ], (4.2)

and 〈Znk , ϕ〉 = E[ϕ(Rnk ) |Znk , Znk−1] holds by the same argument, such that

E[〈Znk , ϕ〉 |Znk−1] = E
[
E[ϕ(Rnk ) |Znk , Znk−1] |Znk−1

]
= E[ϕ(Rnk ) |Znk−1]. (4.3)

In the proof of Theorem 3.3, it suffices to assume that ν = δx, i.e. deterministic starting
conditions. (The general case then follows by mixing over the initial condition.) We need
to show two assertions:

1. The sequence (Z̃n)n=1,2,... is tight.

2. The finite-dimensional distributions of (Z̃n)n=1,2,... converge, such that Z̃nt
n→∞
===⇒

δL(Rt).

For 2., we will show in Lemma 4.2 that Z̃nt
n→∞
===⇒ δL(Rt) holds for all t ≥ 0. Since the right

hand side is deterministic, we have already shown convergence of finite dimensional
distribution and we are left with showing 1. Here, we use Jakubowski’s tightness
criterion, which is recalled in Proposition A.3 in the appendix. For this criterion, we
have to show that (i) Z̃n satisfies the compact containment condition in P(E) (see
Definition 3.2) and (ii) that the sequence (〈Z̃1

t , ϕ〉)t≥0, (〈Z̃2
t , ϕ〉)t≥0, . . . is tight for all
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ϕ ∈ Π′ (a vector space which separates points). (i) will be resolved in Lemma 4.3, while
(ii) is a result in Lemma 4.4. Hence, we are done once we have shown Lemmas 4.2, 4.3
and 4.4.

We start with a fundamental fact, which is based on the fact that two random leaves
from Tn have a most recent common ancestor node which is close to the root.
Recall that by [7, Corollary 4.8.9] we already have that R̃n n→∞

===⇒ R for a Feller- (hence
càdlàg-)process R.

Lemma 4.1 (Convergence to the initial state). Assume that R̃n n→∞
===⇒ R for a càdlàg-

process R = (Rt)t≥0 with state space E. Then, the following holds:

1. Let σ1, . . . , σk ∈ T be fixed. Then,

(Xn
σi)i=1,...,k

n→∞−−−−→ (R0)i=1,...,k

in probability.

2. Let Σn1 ,Σ
n
2 be two vertices, chosen uniformly at random from T[nt]. Then,

(Xn
Σn1∧Σn2

, Xn
(Σn1∧Σn2 )0, X

n
(Σn1∧Σn2 )1)

n→∞−−−−→ (R0, R0, R0)

in probability.

Proof. Recall that for the (independent) random walk (Σk)k=0,1,... on T we have that
Rnk = Xn

Σk
. It suffices to prove the result for deterministic R0 ∈ E. By assumption, for all

m ∈ N,

P(r(Rnm, R0) > ε) = P(r(R̃nm/n, R0) > ε)
n→∞−−−−→ 0, (4.4)

since R has càdlàg paths.
1. Let σ ∈ T and |σ| = m. We have for all ε > 0 that

P(r(Rnm, X
n
σ ) ≤ ε) ≥ P(r(Rnm, X

n
σ ) ≤ ε,Rnm = Xn

σ ) = P(Rnm = Xn
σ ) ≥ 2−m

for all ε > 0, since the random walk (Σm)m=0,1,2,... along we read off Rn has a chance
of 2−m to pass through vertex σ. Assume that the assertion does not hold, i.e. Xn

σ does
not converge weakly to R0. Let ε > 0 such that P(r(Xn

σ , R0) > ε) > ε for all n. Then, for
ε > 0 as above

P(r(Rnm, R0) > ε) ≥ P(r(Rnm, R0) > ε,Rnm = Xn
σ ) ≥ P(r(Xn

σ , R0) > ε,Σm = σ)

= P(r(Xn
σ , R0) > ε) ·P(Σm = σ) ≥ ε2−m

in contradiction to (4.4). Hence, 1. follows.
2. Let ε > 0 and m be large enough for 2−m < 2ε. From 1., we have that (Xn

σ )σ∈Tm
n→∞−−−−→

(R0)σ∈Tm . Moreover, for n > m, P(Σn1 ∧ Σn2 ∈ Tm) =
∑m
k=0 2−(k+1) = 1− 2−(m+1) > 1− ε.

Hence, we can write

P(r(Xn
Σn1∧Σn2

, R0) > ε) ≤ P(r(Xn
Σn1∧Σn2

, R0) > ε,Σn1 ∧ Σn2 ∈ Tm) + P(Σn1 ∧ Σn2 /∈ Tm)

≤ P( sup
σ∈Tm

r(Xn
σ , R0) > ε) + P(Σn1 ∧ Σn2 /∈ Tm)

n→∞−−−−→ 2−(m+1) < ε

by 1. and we have shown that Xn
Σn1∧Σn2

n→∞−−−−→ R0 in probability. By the same arguments,

we also find that Xn
(Σn1∧Σn2 )i

n→∞−−−−→ R0 in probability for i = 0, 1 and we are done.
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Lemma 4.2 (Convergence of Z̃n at fixed times). Consider the same situation as in
Theorem 3.3 and let t ≥ 0. If ν = δx for some x ∈ E, we have that Z̃nt

n→∞
===⇒ δL(Rt).

Proof. Note that the assertion holds once we show that

〈Znt , ϕ〉
n→∞
===⇒ E[ϕ(Rt)] (4.5)

for all ϕ ∈ Cb(E). (Indeed, the family (〈Znt , ϕ〉)n=1,2,... is tight by the boundedness of ϕ
and any subsequent limit point is deterministic by Lemma A.2.) For this, we already
know from (4.1) that E[〈Znt , ϕ〉] = E[ϕ(R̃nt )]

n→∞−−−−→ E[ϕ(Rt)]. Further we will show that

Var[〈Znt , ϕ〉]
n→∞−−−−→ 0 (4.6)

which then implies (4.5). For this, consider two randomly picked vertices Σ1,Σ2 ∈
T[nt] with Σ1 6= Σ2. Then, without loss of generality we assume that π|Σ1∧Σ2|+1XΣ1

=

X(Σ1∧Σ2)0 and π|Σ1∧Σ2|+1XΣ2
= X(Σ1∧Σ2)1 such that (setting δn := 2−[nt]

(
E[ϕ2(Xn

Σ1
) −

ϕ(Xn
Σ1

)ϕ(Xn
Σ2

)]
)
)

E[〈Z̃nt ,ϕ〉2] =
1

22[nt]

∑
σ1,σ2∈T[nt]

E[ϕ(Xn
σ1

)ϕ(Xn
σ2

)]

= E[ϕ(Xn
Σ1

)ϕ(Xn
Σ2

)] + δn

= E
[
E[ϕ(Xn

Σ1
)ϕ(Xn

Σ2
) |Xn

(Σn1∧Σn2 )0, X
n
(Σn1∧Σn2 )1]

]
+ δn

= E
[
E[ϕ(Xn

Σ1
) |Xn

π|Σn1 ∧Σn2 |+1Σ1
] ·E[ϕ(Xn

Σ2
) |Xn

π|Σn1 ∧Σn2 |+1Σ2
]
]

+ δn

= E
[
E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn

π|Σn1 ∧Σn2 |+1Σ1
]

·E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn
π|Σn1 ∧Σn2 |+1Σ2

]
]

+ δn

= E[ϕ(R̃nt )]2 + εnt = E[〈Z̃nt , ϕ〉]2 + εnt

for

εnt := E
[
E[ϕ(Rn[nt]−|Σ1∧Σ2|−1)−E[ϕ(Rn[nt])] |R

n
0 = Xn

π|Σn1 ∧Σn2 |+1Σ1
]

·E[ϕ(Rn[nt]−|Σ1∧Σ2|−1)−E[ϕ(Rn[nt])] |R
n
0 = Xn

π|Σn1 ∧Σn2 |+1Σ2
]
]

+ E[ϕ(Rn[nt])] ·E[ϕ(Rn[nt]−|Σ1∧Σ2|−1)−E[ϕ(Rn[nt])] |R
n
0 = Xn

π|Σn1 ∧Σn2 |+1Σ1
]
]

+ E[ϕ(Rn[nt])] ·E[ϕ(Rn[nt]−|Σ1∧Σ2|−1)−E[ϕ(Rn[nt])] |R
n
0 = Xn

π|Σn1 ∧Σn2 |+1Σ2
]
]

+ δn

= COV
[
E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn

π|Σn1 ∧Σn2 |+1Σ1
],

E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn
π|Σn1 ∧Σn2 |+1Σ2

]]

+ 2 ·E[ϕ(Rn[nt])] ·E[ϕ(Rn[nt]−|Σ1∧Σ2|−1)−E[ϕ(Rn[nt])] |R
n
0 = Xn

π|Σn1 ∧Σn2 |+1Σ2
]
]

+ δn.

(4.7)
Hence, we must show εnt

n→∞−−−−→ 0 for (4.6), which is implied by the boundedness of ϕ
(showing convergence to 0 of the last term of (4.7)), by the Cauchy-Schwartz inequality
once we show that

E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn
π|Σn1 ∧Σn2 |+1Σ1

]
n→∞−−−−→ E[ϕ(Rt) |R0 = x] (4.8)

in probability. Indeed, we already know from Lemma 4.1 that Xn
π|Σn1 ∧Σn2 |+1Σ1

n→∞−−−−→ x in

probability, such that, since R has càdlàg paths, convergence of semigroups [7, Theorem
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1.6.1 (see also Remark 4.8.8)] and the strong continuity of the semigroup for R,

|E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn
π|Σn1 ∧Σn2 |+1Σ1

]−E[ϕ(Rt) |R0 = x]|

≤ |E[ϕ(Rn[nt]−|Σ1∧Σ2|−1) |Rn0 = Xn
π|Σn1 ∧Σn2 |+1Σ1

]−E[ϕ(Rn[nt]) |R
n
0 = Xn

π|Σn1 ∧Σn2 |+1Σ1
]|

+ |E[ϕ(R̃nt ) | R̃n0 = Xn
π|Σn1 ∧Σn2 |+1Σ1

]| −E[ϕ(Rt) |R0 = Xn
π|Σn1 ∧Σn2 |+1Σ1

]|

+ |E[ϕ(Rt) |R0 = Xn
π|Σn1 ∧Σn2 |+1Σ1

]−E[ϕ(Rt) |R0 = x]|
n→∞−−−−→ 0

in probability, which shows (4.8). This completes the proof.

Now, we come to the proof of the compact containment condition for (Z̃n)n=1,2,....

Lemma 4.3 (Compact containment condition for Z̃n). If (R̃n)n=1,2,... satisfies the com-

pact containment condition (in E), then (Z̃n)n=1,2,... satisfies the compact containment
condition (in P(E)) as well.

Proof. For all δ > 0, let Kδ ⊆ E be compact and such that

sup
n=1,2,...

P(R̃nt /∈ Kδ for some 0 ≤ t ≤ T ) < δ.

This is the same as saying that for the set Tn of {0, 1
n , . . . ,

[Tn]
n }-valued random times,

sup
n=1,2,...

sup
τn∈Tn

P(R̃nτn /∈ Kδ) < δ.

For δ, ε > 0, set

Lδ := {µ ∈ P(E) : µ(Kc
δ2) < δ}, L :=

∞⋂
n=1

Lε2−n .

Then, the closure of L is a compact subset of P(E) by Prohorov’s Theorem. Moreover,

sup
n=1,2,...

sup
τn∈Tn

P(Z̃nτn(Kc
ε24−`) > ε2−`) ≤ sup

n=1,2,...
sup
τn∈Tn

1
ε2−`

E[〈Z̃nτn , 1Kc

ε24−`
〉]

= sup
n=1,2,...

sup
τn∈Tn

1
ε2−`

E[1Kc

ε24−`
(R̃nτn)] = sup

n=1,2,...
sup
τn∈Tn

1
ε2−`

P(R̃nτn /∈ Kε24−`) < ε2−`,

hence,

sup
n=1,2,...

P(Z̃nt /∈ L for some 0 ≤ t ≤ T ) = sup
n=1,2,...

sup
τn∈Tn

P(Z̃nτn /∈ L)

≤ sup
n=1,2,...

sup
τn∈Tn

∞∑
`=1

P(Z̃nτn(Kc
ε24−`) > ε2−`) < ε.

Lemma 4.4 (Martingale convergence). Consider the same situation as in Theorem 3.3
with ν = δx for some x ∈ E. Let ϕ ∈ Π and ϕn ∈ B(E) such that ‖ϕn − ϕ‖

n→∞−−−−→ 0. For
fn(z) := 〈z, ϕn〉, consider the mean-zero martingaleMn,ϕn = (Mn,ϕn

t )t≥0, given by

Mn,ϕn
t := fn(Zn[nt])− fn(Zn0 )−

[nt]∑
k=1

E[fn(Znk )− fn(Znk−1) |Znk−1].

Then,Mn,ϕn n→∞
===⇒ 0 and fn(Z̃n)

n→∞
===⇒ E[ϕ(R)]. In particular, (fn(Z̃n))n=1,2,... is tight.

ECP 19 (2014), paper 77.
Page 8/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3601
http://ecp.ejpecp.org/


Some limit results for Markov chains indexed by trees

Proof. We start by reformulating, using (4.2),

Mn,ϕn
t = 〈Zn[nt], ϕn〉 − 〈Z

n
0 , ϕn〉 −

[nt]∑
k=1

E[〈Znk , ϕn〉 − 〈Znk−1, ϕn〉 |Znk−1]

= E[ϕn(Rn[nt]) |Z
n
[nt]]−E[ϕn(Rn0 ) |Zn0 ]−

∫ t−1/n

0

n ·E
[
E[ϕn(Rn[ns]+1)− ϕn(Rn[ns])] |Z

n
[ns]

]
ds

= E[ϕn(R̃nt ) | Z̃nt ]−E[ϕn(R̃n0 ) | Z̃n0 ]−
∫ t−1/n

0

n ·E
[
ϕn(R̃ns+1/n)− ϕn(R̃ns ) | Z̃ns

]
ds. (4.9)

We now show that Mn,ϕn n→∞
===⇒ 0. From Lemma 4.2, we already know that Z̃nt

n→∞
===⇒

L(Rt). We complement this by showing that (note that the right hand side is determinis-
tic) for all s ≥ 0

n ·E
[
ϕn(R̃ns+1/n)− ϕn(R̃ns ) | Z̃ns

] n→∞
===⇒ E

[
GRϕ(Rs)

]
.

Indeed,

E
[∣∣∣n ·E[ϕn(R̃ns+1/n)− ϕn(R̃ns ) | Z̃ns

]
−E[GRϕ(Rs)]

∣∣∣]
≤ E

[∣∣∣n ·E[ϕn(R̃ns+1/n)− ϕn(R̃ns ) | Z̃ns
]
−E

[
GRϕ(R̃ns ) | Z̃ns

]∣∣∣]
+ E

[∣∣∣E[GRϕ(R̃ns )−E
[
GRϕ(Rs)

]
| Z̃ns

]∣∣∣] n→∞−−−−→ 0

(4.10)

in probability, by (3.3) and Lemma 4.2, which shows that – using (4.2) –

E[GRϕ(R̃ns ) | Z̃ns ] = 〈Z̃ns , GRϕ〉
n→∞
===⇒ E[GRϕ(Rs)].

For every t ≥ 0, we now have that

Mn,ϕn
t

n→∞
===⇒ E[ϕ(Rt)]−

∫ t

0

E[GRϕ(Rs)]ds = 0. (4.11)

Hence, we can write by Doob’s inequality

P( sup
0≤s≤t

|Mn,ϕn
s | > ε) ≤ 1

εE[|Mn,ϕn
t |] n→∞−−−−→ 0, (4.12)

since Mn,ϕ
t is bounded in n and convergence in (4.11) also holds in probability. Then,

using (4.9),

P( sup
0≤s≤t

|〈Z̃ns , ϕn〉 −E[ϕ(Rs)]| > 3ε)

≤ P( sup
0≤s≤t

|Mn,ϕn
s | > ε)

+ P
(∫ t−1/n

0

∣∣∣n ·E[ϕn(R̃ns+1/n)− ϕn(R̃ns ) | Z̃ns
]
ds−E

[
GRϕ(Rs)

]∣∣∣ds > ε
)

+ P
(∫ t

t−1/n

∣∣∣E[GRϕ(Rs)
]∣∣∣ds > ε

)
n→∞−−−−→ 0

by (4.12) and (4.10).

A Random probability measures

In the following, (E, r) is a complete and separable metric space and P(E) is the set
of probability measures on (the Borel σ-algebra of) E, equipped with the topology of
weak convergence. We will state some results about random measures.
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Definition A.1 (First two moment measures). For a random variable Z, taking values in
P(E), and k = 1, 2, . . . , there is a uniquely determined measure µ(k) on B(Ek) such that

E[Z(A1) · · ·Z(Ak)] = µ(k)(A1 × · · · ×Ak)

for A1, . . . , Ak ∈ B(E). This is called the k-th moment measure. Equivalently, µ(k) is
the unique measure such that E[〈Z,ϕ1〉 · · · 〈Z,ϕk〉] = 〈µ(k), ϕ1 · · ·ϕk〉, where 〈·, ·〉 denotes
integration.

Lemma A.2 (Characterisation of deterministic random measures). Let Z be a random
variable taking values in P(E) with the first two moment measures µ := µ(1) and µ(2).
Then the following assertions are equivalent:

1. There is ν ∈ P(E) with Z = ν, almost surely.

2. The second moment measure has product-form, i.e. µ(2) = µ⊗µ (which is equivalent
to

E[〈Z,ϕ1〉 · 〈Z,ϕ2〉] = 〈µ, ϕ1〉 · 〈µ, ϕ2〉

for all ϕ1, ϕ2 ∈ Cb(E)). (This is in fact equivalent to E[〈Z,ϕ〉2] = 〈µ, ϕ〉2 for all
ϕ ∈ Cb(E)).

In either case, µ = ν.

Proof. 1.⇒2.: This is clear since we have E[Z(A)] = ν(A), i.e. µ = ν. Moreover,
E[Z(A1)Z(A2)] = ν(A1)ν(A2) = µ(A1)µ(A2) = µ⊗ µ(A1 ×A2).

2.⇒1.: Since the second moment-measure has product form, for any measurable
A ⊆ E, Var[Z(A)] = E[Z(A)Z(A)] − E[Z(A)]2 = µ(2)(A × A) − (µ(A))2 = 0, i.e. the
random variable Z(A) has zero variance and therefore is deterministic. In particular,
Z(A) = E[Z(A)] = µ(A) and the assertions follows with ν = µ.

We end this appendix by recalling Jakubowski’s tightness criterion from [10]; see also [4,
Theorem 3.6.4].

Proposition A.3 (Jakubowski’s tightness criterion). Assume the family Π ⊆ Cb(E) is
a vector space that separates points. A sequence Z1 = (Z1

t )t≥0, Z2 = (Z2
t )t≥0,. . . of

P(E)-valued processes with càdlàg-paths is tight if the following holds:

1. (Zn)n=1,2,... satisfies the compact containment condition.

2. For every f ∈ Π, the sequence (f(Zn))n=1,2,... with f(Zn) = (〈f, Znt 〉)t≥0 is tight.

Acknowledgments. We thank an anonymous referee for careful reading which im-
proved the manuscript.
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