Open Access
Translator Disclaimer
September 2008 On the finite time blow-up of the Euler-Poisson equations in $\Bbb R^{2}$
Donghao Chae, Eitan Tadmor
Commun. Math. Sci. 6(3): 785-789 (September 2008).

Abstract

We prove the finite time blow-up for $C^1$ solutions of the attractive Euler-Poisson equations in $\Bbb R^{2}$, $n\geq1$, with and without background state, for a large set of ’generic’ initial data. We characterize this supercritical set by tracing the spectral dynamics of the deformation and vorticity tensors.

Citation

Download Citation

Donghao Chae. Eitan Tadmor. "On the finite time blow-up of the Euler-Poisson equations in $\Bbb R^{2}$." Commun. Math. Sci. 6 (3) 785 - 789, September 2008.

Information

Published: September 2008
First available in Project Euclid: 29 September 2008

zbMATH: 1157.35086
MathSciNet: MR2455476

Subjects:
Primary: 35B30 , 35Q35

Keywords: Euler-Poisson equations , finite time blow-up

Rights: Copyright © 2008 International Press of Boston

JOURNAL ARTICLE
5 PAGES


SHARE
Vol.6 • No. 3 • September 2008
Back to Top