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FAST COMMUNICATION

ON THE FINITE TIME BLOW-UP OF THE

EULER-POISSON EQUATIONS IN R
N ∗

DONGHAO CHAE† AND EITAN TADMOR‡

Abstract. We prove the finite time blow-up for C1 solutions of the attractive Euler-Poisson
equations in R

n, n≥1, with and without background state, for a large set of ’generic’ initial data. We
characterize this supercritical set by tracing the spectral dynamics of the deformation and vorticity
tensors.
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1. The Euler-Poisson equations

We are concerned with the pressureless Euler-Poisson equations in R
n, n≥1,

∂tρ+div(ρv)=0, (1.1a)

∂t(ρv)+div(ρu⊗u)=−kρ∇φ, −∆φ=ρ−c, (1.1b)
{

v(x,0)=v0(x),
ρ(x,0)=ρ0(x).

(1.1c)

The equations involve the unknown velocity field, v =(v1,... ,vn)=v(x,t), local density
ρ=ρ(x,t)≥0, potential function φ=φ(x,t), and the two constants, c and k. Here, c≥
0 is the constant “background” state; typical cases include the case of zero background,
c=0, or the case of a nonzero background given by the average mass, c= ρ̄, where

ρ̄ :=

∫

ρ(x,t)dx=

∫

ρ0(x)dx.

Finally, k is a scaled physical constant which signifies whether the underlying forcing
is attractive, when k <0, or repulsive, when k >0.

The hyperbolic-elliptic system (1.1) appears in a variety of different applications,
from small scale models in charge transport and plasma collision, e.g., [18, 8], to large
scale dynamics of (clusters of) stars in cosmological waves, and expansion of the cold
ions, e.g., [1, 7].

For the questions of local regularity and global existence of weak solutions, we
refer to [13, 14, 5] for local existence in the small Hs-neighborhood of a steady state,
and to [16, 9] for the relaxation limit of the weak entropy solution in the isentropic and
isothermal cases. Global existence with a “sufficient” amount of damping relaxation
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can be found in [22, 23, 12]. For the model without damping relaxation, global
existence was obtained by Guo [6], assuming the flow is irrotational and the data is
in the small H2-neighborhood of a constant state.

We focus our attention on the questions of global regularity versus finite-time
breakdown of solutions for (1.1). In this case, the precise configuration of the initial
data and the type of attractive vs. repulsive forcing play a decisive role. On the one
hand, there are various non-existence results. A finite time breakdown result in the
case of attractive forces, k <0, was proved by Makino and Perthame ([15]) for the
spherically symmetric Euler-Poisson equations with pressure, subject to compactly
supported ρ(x,t) in R

3. For the repulsive case, with similar geometry, the blow-up
was deduced in [20] provided that the initial data is sufficiently large. The study of
singularity formation in the model with diffusion and relaxation can be found in [24].
Local conditions for the finite-time loss of smoothness in the one-dimensional case
with and without pressure were given in [3, 4]. On the other hand, there are various
results on the long time existence of strong solutions. Global regularity results for a
large class of initial data near a steady state is obtained in [6]. In [19] the stability
type of result was obtained with inclusion of the pressure.

All these results leave open the question of global regularity of solutions to (1.1)
subject to more general settings of initial configurations, which are not necessarily
confined to a “sufficiently small” neighborhood of any prefered state (including in-
finity). It is in this sense that we are concerned here with the global regularity vs.
finite-time breakdown of solutions to (1.1). The main difficulty lies with the nonlocal
nature of the forcing term, −k∇φ, which resembles the notorious pressure term in the
3D incompressible Euler equations. This feature was emphasized in [11], and was the
main motivation for studying the so-called ‘restricted Euler-Poisson’ model, where
the nonlocal forcing term is replaced by a local one. It is shown that in the repulsive
case, the restricted model admits global smooth solutions for a large set of initial
configurations, so called sub-critical conditions which are not necessarily confined to
any prefered small neighborhood. This type of ‘critical threshold phenomena’ was
studied in [3, 10, 11, 2] via spectral dynamics, and we will use it below to derive finite
time breakdown in the attractive case.

Our aim in this paper is to show that finite time blow-up is generic for the at-
tractive Euler-Poisson equations under suitable conditions for a large class of initial
data. In section 2 we show how to bypass the difficulty of nonlocal forcing by tracing
the spectral dynamics of the symmetric part of the velocity gradient matrix (de-
formation tensor) and observing that the vanishing property of the skew-symmetric
part (vorticity tensor) is preserved along the particle trajectories. In contrast to this
generic finite time blow-up in the attractive case, one expects global regularity for
large sets of initial configurations in the repulsive Euler-Poisson equations. These
are the sub-critical initial data identified in the one-dimensional case [3, 21] and the
two-dimensional case of the restricted Euler-Poisson equations [11]. The regularity of
the non-restricted repulsive Euler-Poisson equations in n>1 dimensions remains an
outstanding open problem.

2. Finite time blow-up in the attractive case

We focus on the case k <0, which represents the case of attractive Poisson forcing.
Let us define the rescaled vorticity matrix Ω=(Ωij) for the n dimensional vector field
v =(v1,··· ,vn) as Ωij := 1

2 (∂iv
j −∂jv

i), i,j =1,··· ,n (the extra 1
2 factor will simplify

our formulae below). In the 1-D case we set Ω≡0.
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Theorem 2.1. Consider the n-dimensional Euler-Poisson equations (1.1). Assume
that the initial data (ρ0,v0) satisfies,

S :=
{

a∈R
n |ρ0(a)>0,Ω0(a)=0,divv0(a)+

√
−nkc<0

}

6=∅.

Then the C1−regularity of local classical solution with initial data v0,ρ0 cannot persist
for arbitrarily long times, namely, there exists tc <∞ such that divv(·,t)↓−∞ as t↑ tc.

Remark 2.1. We refer to S as the set of supercritical configurations. We observe that
in the zero-background case, c=0, Theorem 2.1 implies a finite time breakdown for
generic non-vacuum, supercritical initial configurations where Ω0(a)=0 and divv0(a)<

0. In particular, in the 1-D case and in the n-D spherically symmetric case, the
requirement for vanishing vorticity, Ω0(a)=0, is redundant.

Remark 2.2. The finite time blow-up is a local phenomenon and does not depend
on the specific domain; the same results hold for a bounded domain with a smooth
boundary or a periodic domain.

Remark 2.3. The finite-time breakdown will occur at a critical time, tc <∞, which
satisfies

tc ≤ inf
a∈S

tc(a)<∞, tc(a) :=
{ 1

2
√
−nkc

ln
divv0(a)−

√
−nkc

divv0(a)+
√
−nkc

}

.

Proof. Away from vacuum, where ρ>0, the momentum equation (1.1b) can be
rewritten solely in terms of the velocity field,

∂tv+(v ·∇)v =−k∇φ,
{

(x,t)∈R
n× [0,∞)

∣

∣ρ(x,t)>0
}

. (2.1)

Taking partial derivatives of (2.1) we obtain the Ricatti matrix equation,

∂tV +(v ·∇)V +V 2 =−kΦ, (2.2)

where V := (∂iv
j) is the stress tensor and Φ :=(∂i∂jφ) is the Hessian of φ. The sym-

metric and the skew-symmetric parts of (2.2) satisfy

D

Dt
D=−D2−Ω2−kΦ, (2.3a)

and

D

Dt
Ω=−DΩ−ΩD. (2.3b)

Here, D := 1
2 (V +V ⊤), Ω := 1

2 (V −V ⊤), and D
Dt

=∂t +(v ·∇) amounts to path differ-
entiation

D

Dt
[·](x,t)=

d

dt
[·](X(a,t),t),

along particle trajectories {X(a,t)|Xt(a,t)=v(X(a,t),t), X(a,0)=a}, where v(x,t)
is a classical solution of the system (1.1).

Consider a particle trajectory starting at a∈S and let λ be an eigenvalue of D
associated with a normalized eigenvector rλ. We are interested in the dynamics of the



788 ON THE FINITE TIME BLOW-UP OF THE EULER-POISSON EQUATIONS

eigenvalues along such particle trajectories, λ=λ(X(a,t),t). Now, the initial state at
a∈S is assumed to be a non-vacuum state. Hence, as long as ρ(·,t) remains positive,
(2.3a) applies, and the spectral dynamics of λ is governed by, e.g., [11, Sec. 3]

D

Dt
λ=−λ2−〈Ω2rλ,rλ〉−k〈Φrλ,rλ〉. (2.4)

Since the initial vorticity vanishes at S, equation (2.3b) tells us that Ω remains
zero along the corresponding trajectory, Ω0(a)=0 7→Ω(X(a,t),t)=0. It follows from
(2.4) that as long as the particle trajectory does not cross into a vacuum state, then

D

Dt

∑

λ

λ=−
∑

λ

λ2−k
∑

λ

〈Φrλ,rλ〉, λ≡λ(D). (2.5)

We observe that
∑

λ=tr(D)=divv and hence

∑

λ2≥ 1

n

(

∑

λ
)2

=
1

n
(divv)2;

also,

∑

λ

〈Φrλ,rλ〉=trΦ=∆φ=−(ρ−c).

Since kρ≤0, we end up with the Ricatti-type inequality

D

Dt
divv≤− 1

n
(divv)2−kc. (2.6)

The last inequality implies that the divergence is non-increasing along {X(a,t),a∈S}1

divv(·,t)≤M0 := sup
a∈S

{

divv0(a)}≤−
√
−nkc,

and hence, by (1.1a), a particle path initiated in a∈S remains non-vacuum for all
time

D

Dt
ρ=−divv ·ρ 7→ ρ(X(a,t),t)≥e−M0tρ0(a)>0.

Moreover, if we wait long enough, solutions of (2.6) subject to divv0(a)<−
√
−nkc

will blow up as lim
t↑tc(a)

divv =−∞. Thus, there is a finite time breakdown on or before

tc(a) whenever a∈S.
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1In fact, divv remains uniformly upper-bounded for all non-vacuum paths, divv(·,t)≤
sup

{a:ρ0(a)>0}

˘

divv0(a),
√
−nkc

¯

.
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