Open Access
2013 Optical Fields in a Multilayer Microsphere with a Quasi-periodic Pascal Sequence
A. Díaz-de-Anda, G. Burlak, M. Nájera-Villeda
Commun. Math. Anal. 14(2): 67-76 (2013).
Abstract

We studied numerically the frequency spectrum of photons in a multilayered microsphere coated by a quasiperiodic (Pascal) dielectric stack. It is found that the transmittancy spectrum of such a stack consists of quasiband gaps and narrow resonances caused by re-reflection of optical waves. When the number (Pascal order) of layers increases, the band gaps and resonances split, and the structure of the frequency spectrum acquires a fractal form. Some parts of the spectrum show the self-similarity in the different frequency scales.

References

1.

V. V. Klimov and V. S. Letokhov, The enhancement and inhibition of the spontaneous-emission rates in nanobubbles. Chem. Phys. Lett., 301 (1999), pp 441-448. V. V. Klimov and V. S. Letokhov, The enhancement and inhibition of the spontaneous-emission rates in nanobubbles. Chem. Phys. Lett., 301 (1999), pp 441-448.

2.

M. V. Artemyev and U. Woggon, Quantum dots in photonic dots. Appl. Phys. Lett. 76 (2000), pp 1353-1356. M. V. Artemyev and U. Woggon, Quantum dots in photonic dots. Appl. Phys. Lett. 76 (2000), pp 1353-1356.

3.

H. T. Dung, L. Knoll, and W. Dirk-Gunnar, Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity. Phys. Rev. A. 62 (2000), pp 053804. H. T. Dung, L. Knoll, and W. Dirk-Gunnar, Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity. Phys. Rev. A. 62 (2000), pp 053804.

4.

C. Deumie, P. Voarino and C. Amra, Overcoated Microspheres for Specific Optical Powders. Appl. Opt. 41 (2002), pp 3299-3305. C. Deumie, P. Voarino and C. Amra, Overcoated Microspheres for Specific Optical Powders. Appl. Opt. 41 (2002), pp 3299-3305.

5.

I. Gourevich, L. M. Field and Z. Wei, et al., Polymer Multilayer Particles: A Route to Spherical Dielectric Resonators. Macromolecules 39 (2006), pp 1449-1454. I. Gourevich, L. M. Field and Z. Wei, et al., Polymer Multilayer Particles: A Route to Spherical Dielectric Resonators. Macromolecules 39 (2006), pp 1449-1454.

6.

S. John, Electromacnetic absoption in a disordered medium near a photon mobility edge, Phys. Rev. Lett. 53 (1984), pp 2169-2172. S. John, Electromacnetic absoption in a disordered medium near a photon mobility edge, Phys. Rev. Lett. 53 (1984), pp 2169-2172.

7.

P. Anderson, The question of classical localization. A theory of white paint?. Philos. Mag. B 52 (1985), pp 505-509. P. Anderson, The question of classical localization. A theory of white paint?. Philos. Mag. B 52 (1985), pp 505-509.

8.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium. Nature London 390 (1997), pp 671-673. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium. Nature London 390 (1997), pp 671-673.

9.

F. Craciun, A. Bettucci, E. Molinari, A. Petri, and A. Alippi, Direct experimental observation of fracton mode patterns in one-dimensional Cantor composites. Phys. Rev. Lett. 68 (1992), pp 1555-1558. F. Craciun, A. Bettucci, E. Molinari, A. Petri, and A. Alippi, Direct experimental observation of fracton mode patterns in one-dimensional Cantor composites. Phys. Rev. Lett. 68 (1992), pp 1555-1558.

10.

A. V. Lavrinenko,S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter. Phys. Rev. E 65(2002), pp 036621. A. V. Lavrinenko,S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter. Phys. Rev. E 65(2002), pp 036621.

11.

G. Burlak, A. Díaz-de-Anda, Optical fields in a multilayered microsphere with a quasiperiodic spherical stack. Optics Commun. 281 (2008), pp 181-189. G. Burlak, A. Díaz-de-Anda, Optical fields in a multilayered microsphere with a quasiperiodic spherical stack. Optics Commun. 281 (2008), pp 181-189.

12.

G.Burlak, The Classical and Quantum Dynamics of the Multispherical Nanostructures, Imperial College Press, 2004. G.Burlak, The Classical and Quantum Dynamics of the Multispherical Nanostructures, Imperial College Press, 2004.

13.

W. Panofsky, M. Phillips, Classical Electricity, Addison-Wesley Publishing Company, 1962.  MR135824W. Panofsky, M. Phillips, Classical Electricity, Addison-Wesley Publishing Company, 1962.  MR135824

14.

W. C. Waves, Fields in Inhomogeneous Media, IEEE Press, New York, 1996. W. C. Waves, Fields in Inhomogeneous Media, IEEE Press, New York, 1996.

15.

A. Stratton, Electromagnetic Theory, New York,McGraw-Hill, 1941. A. Stratton, Electromagnetic Theory, New York,McGraw-Hill, 1941.

16.

M. Kohmoto, B. Sutherland, and C. Tang, Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B. 35 (1987), pp 1020-1033.  MR873230 10.1103/PhysRevB.35.1020 M. Kohmoto, B. Sutherland, and C. Tang, Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B. 35 (1987), pp 1020-1033.  MR873230 10.1103/PhysRevB.35.1020

17.

W. Gellermann and M. Kohmoto, Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72 (1994), pp 633-636. W. Gellermann and M. Kohmoto, Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72 (1994), pp 633-636.

18.

T. Hattori, N. Tsurumachi, Sakae Kawato, and Hiroki Nakatsuka, Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B. 50 (1994), pp 4220-4223. T. Hattori, N. Tsurumachi, Sakae Kawato, and Hiroki Nakatsuka, Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B. 50 (1994), pp 4220-4223.
Copyright © 2013 Mathematical Research Publishers
A. Díaz-de-Anda, G. Burlak, and M. Nájera-Villeda "Optical Fields in a Multilayer Microsphere with a Quasi-periodic Pascal Sequence," Communications in Mathematical Analysis 14(2), 67-76, (2013). https://doi.org/
Published: 2013
Vol.14 • No. 2 • 2013
Back to Top