Open Access
march 2017 A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)
Nicolás Andruskiewitsch, Iván Angiono, Fiorela Rossi Bertone
Bull. Belg. Math. Soc. Simon Stevin 24(1): 15-34 (march 2017). DOI: 10.36045/bbms/1489888813

Abstract

Let ${\mathcal{B}}_{\mathfrak{q}}$ be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix $\mathfrak{q} \in {\mathbf{k}}^{\theta \times \theta}$. Let ${\mathcal{L}}_{\mathfrak{q}}$ be the Lusztig algebra associated to ${\mathcal{B}}_{\mathfrak{q}}$. We present ${\mathcal{L}}_{\mathfrak{q}}$ as an extension (as braided Hopf algebras) of ${\mathcal{B}}_{\mathfrak{q}}$ by ${\mathfrak Z}_{\mathfrak{q}}$ where ${\mathfrak Z}_{\mathfrak{q}}$ is isomorphic to the universal enveloping algebra of a Lie algebra ${\mathfrak{n}}_\mathfrak{q}$. We compute the Lie algebra ${\mathfrak{n}}_{\mathfrak{q}}$ when $\theta = 2$.

Citation

Download Citation

Nicolás Andruskiewitsch. Iván Angiono. Fiorela Rossi Bertone. "A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)." Bull. Belg. Math. Soc. Simon Stevin 24 (1) 15 - 34, march 2017. https://doi.org/10.36045/bbms/1489888813

Information

Published: march 2017
First available in Project Euclid: 19 March 2017

zbMATH: 06751306
MathSciNet: MR3625784
Digital Object Identifier: 10.36045/bbms/1489888813

Subjects:
Primary: 16T20 , 17B37

Rights: Copyright © 2017 The Belgian Mathematical Society

Vol.24 • No. 1 • march 2017
Back to Top