Abstract
Let ${\mathcal{B}}_{\mathfrak{q}}$ be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix $\mathfrak{q} \in {\mathbf{k}}^{\theta \times \theta}$. Let ${\mathcal{L}}_{\mathfrak{q}}$ be the Lusztig algebra associated to ${\mathcal{B}}_{\mathfrak{q}}$. We present ${\mathcal{L}}_{\mathfrak{q}}$ as an extension (as braided Hopf algebras) of ${\mathcal{B}}_{\mathfrak{q}}$ by ${\mathfrak Z}_{\mathfrak{q}}$ where ${\mathfrak Z}_{\mathfrak{q}}$ is isomorphic to the universal enveloping algebra of a Lie algebra ${\mathfrak{n}}_\mathfrak{q}$. We compute the Lie algebra ${\mathfrak{n}}_{\mathfrak{q}}$ when $\theta = 2$.
Citation
Nicolás Andruskiewitsch. Iván Angiono. Fiorela Rossi Bertone. "A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)." Bull. Belg. Math. Soc. Simon Stevin 24 (1) 15 - 34, march 2017. https://doi.org/10.36045/bbms/1489888813