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Abstract

Let B, be a finite-dimensional Nichols algebra of diagonal type corre-
sponding to a matrix q € k?*?. Let L, be the Lusztig algebra associated to B,
[AAR]. We present L, as an extension (as braided Hopf algebras) of 3, by 3,
where 3, is isomorphic to the universal enveloping algebra of a Lie algebra
n;. We compute the Lie algebra ny when 6 = 2.

1 Introduction

1.1 Let k be a field, algebraically closed and of characteristic zero. Let 6 € IN,
[ =1p:={1,2,..,0}. Letq = (i) jec1 be a matrix with entries in k*, V a vector
space with a basis (x;);cp and ¢? € GL(V ® V) be given by

cq(xi®x]') = gijXj @ X, i,j €l

Then (¢ ® id)(id ®c?)(c? ® id) = (id®c)(c? ® id)(id ®c?), i.e. (V,c%) is a
braided vector space and the corresponding Nichols algebra B, := B(V) is called
of diagonal type. Recall that 53, is the image of the unique map of braided Hopf
algebras Q) : T(V) — T°(V) from the free associative algebra of V to the free
associative coalgebra of V, such that €}, = idy. For unexplained terminology
and notation, we refer to [AS].
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Remarkably, the explicit classification of all g such that dim B; < co is known
[H2] (we recall the list when 6 = 2 in Table 1). Also, for every q in the list of [H2],
the defining relations are described in [A2, A3].

1.2 Assume that dim B; < co. Two infinite dimensional graded braided Hopf
algebras Bq and L, (the Lusztig algebra of V) were introduced and studied in
[A3, A5], respectively [AAR]. Indeed, Eq is a pre-Nichols, and £ a post-Nichols,
algebra of V, meaning that gq is intermediate between T (V') and B, while L, is
intermediate between B, and T¢(V). This is summarized in the following com-
mutative diagram:

O

/\

T(V) B, Te(V)
\ ) % \ /
B, L,

The algebras gq and L are generalizations of the positive parts of the De Concini-
Kac-Procesi quantum group, respectively the Lusztig quantum divided powers

algebra. The distinguished pre-Nichols algebra gq is defined discarding some of
the relations in [A3], while L is the graded dual of 5.

1.3 The following notions are discussed in Section 2. Let A% be the generalized
positive root system of B, and let O4 C A% be the set of Cartan roots of q. Let
xg be the root vector associated to f € AY, let Ng = ord ggp and let Z, be the

subalgebra of gq generated by x;\]ﬁ , B € Oq. By [A5, Theorems 4.10, 4.13], Z, is

a braided normal Hopf subalgebra of Eq and Z; = 7 Eq, Actually, Z; is a true
commutative Hopf algebra provided that

T =1, Va, B € O (1)

Let 3, be the graded dual of Z;; under the assumption (1) 3, is a cocommuta-
tive Hopf algebra, hence it is isomorphic to the enveloping algebra U/ (n) of the
Lie algebra ng := P(34). We show in Section 3 that £, is an extension (as braided
Hopf algebras) of B; by 34:

By 5 Lo 5 34 )

The main result of this paper is the determination of the Lie algebra n; when
8 = 2 and the generalized Dynkin diagram of q is connected.

Theorem 1.1. Assume that dim By < oo and 6 = 2. Then ny is either 0 or isomorphic
to g, where g is a finite-dimensional semisimple Lie algebra listed in the last column of
Table 1.
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Assume that there exists a Cartan matrix a = (a;;) of finite type, that becomes
symmetric after multiplying with a diagonal (d;), and a root of unit g of odd order
(and relatively prime to 3 if a is of type G7) such that g;; = g% for all i,j € 1.
Then (2) encodes the quantum Frobenius homomorphism defined by Lusztig and
Theorem 1.1 is a result from [L].

The penultimate column of Table 1 indicates the type of q as established in
[AA]. Thus, we associate Lie algebras in characteristic zero to some contragredi-
ent Lie (super)algebras in positive characteristic. In a forthcoming paper we shall
compute the Lie algebra n, for 6 > 2.

1.4 The paper is organized as follows. We collect the needed preliminary ma-
terial in Section 2. Section 3 is devoted to the exactness of (2). The computations
of the various n, is the matter of Section 4. We denote by Gy the group of N-th
roots of 1, and by G its subset of primitive roots.

2 Preliminaries

2.1 The Nichols algebra, the distinguished-pre-Nichols algebra and the
Lusztig algebra

Let q be as in the Introduction and let (V, ¢%) be the corresponding braided vector
space of diagonal type. We assume from now on that 3 is finite-dimensional.
Let («j)jcr be the canonical basis of Z°. Let q : Z% x Z° — k* be the Z-bilinear

form associated to the matrix g, i.e. q(oc]-, ag) = qgjx foralljk e I. Ifa, B € 7, we
set gu5 = q(a, B). Consider the matrix (c?].)i,]'e]l, ¢ij € Z defined by ¢} = 2,

C?j = —min {TZ € No : (1’1 + 1)%(1 — E]qu]qﬂ) = 0} , i 75 ] (3)
This is well-defined by [R]. Let i € I. We recall the following definitions:

o The reflection s} € GL(Z), given by sJ(a;) = aj — C?jﬂci,j el

o The matrix p;(q), given by p;(q)j = q(s] («j), s} (a)), j, k € L
¢ The braided vector space p;(V') of diagonal type with matrix p;(q).

A basic result is that By >~ B, (), at least as graded vector spaces.
The algebras T(V) and By are Z’-graded by degx; = a;, i € I. Let A", be the
set of Z?-degrees of the generators of a PBW-basis of B, counted with multiplic-

ities [H1]. The elements of A% are called (positive) roots. Let AT = AT U —AT.
Let

X = {p]l p]N(q) :jl,...,jN eI, N € N}

Then the generalized root system of q is the fibration A — X', where the fiber of
P, - - - Pjy (q) is APFiy () The Weyl groupoid of B, is a groupoid, denoted W,,
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Row | Generalized Dynkin diagrams | parameters | Typeof By | ng~g"

1 I 90 1 qg#1 Cartan A Ay
2 g 9" _ol _Ol q _ol g # +1 Super A Aq
3 1920 g # +1 Cartan B B,
4 g g2 -1~ p 1 q ¢ Gy Super B AL DA
5 Cogta Lyl CeGzFqg |br(2,a) A1 @ Aq
6 { ¢ 1 g { € G} Standard B | 0
_ 72_ _72_7-2 -1 — 2 -~ -1
7 é ¢ Cg é S é o | C€e6y ufo(7) 0
- z -1 —?7571 -1
O O O O
_ 72 _ 72 _ 72 -1 — 71_ -1
8 é ‘ Cg é 3 O é ¢ o ¢ e Gy ufo(8) Aq
o 3 3 4 1 _72 _ .
9 O%Zé égol é g Ol { € G} btj(2;3) A1 & Ay
10 | 9427 ¢ Gy,UG; | Cartan G, | G,
2 -1 2 1 — —
L R e S S S L= &4 Standard G, | A; @ A;
6 i _7—4 76 -1
12 g —! g é ¢ CO { € G, ufo(9) AL ® A
—7* s -1 ¢ 5 -1
O O O O
1 -2, — .
13| e e { € G btj(2;5) B,
14 | Lot ¢ € Gh ufo(10) AL ® A
7C 2 C3 —1 7@727C3 —1
oO———O
— _ 5 3 _ 74
15 05 < g é - g € Gls ufo(11) A& Ay
gS C—Z -1 €3 gZ -1
O O O O
16 |t ete [ eG ufo(12) Go

Table 1: Lie algebras arising from Dynkin diagrams of rank 2.
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that acts on this fibration, generalizing the classical Weyl group, see [H1]. We
know from loc. cit. that W, is finite (and this characterizes finite-dimensional
Nichols algebras of diagonal type).

Here is a useful description of Al. Let w € W, be an element of maximal
length. We fix a reduced expression w = 01-‘1 i, -+ - 03y, For 1 < k < M set

Be=s - si_ (i), (4)

Then A = {Bk|1 < k < M} [CH, Prop. 2.12]; in particular |A% | =

The notion of Cartan root is instrumental for the definitions of gq and L,.
First, following [A5] we say that i € I is a Cartan vertex of q if

q

C . .
qiqji = qu , forall j # i, (5)
Then the set of Cartan roots of q is
Oq = {s{si,...s;(a;) € A 1 i € Iis a Cartan vertex of p;, ... p;,p;, () }.

Given a positive root B € Al, there is an associated root vector xg € B,
defined via the so-called Lusztig isomorphisms [H3]. Set Ng = ordqgs € N,
B e Al Also, forh = (hy,..., hy) € NM we write

h ha -1 K

= X v B

Let N = Ny %f P # Oq'. For simplicity, we introduce
0 if By € Oq.
H={hecN):0<h <Ny, forall k € Iy}. (6)

By [A5, Theorem 3.6] the set {x" | h € H} is a basis of 5.

As said in the Introduction, the Lusztig algebra associated to By is the braided
Hopf algebra £; which is the graded dual of Bq Thus, it comes equlpped with a
bilinear form (, ) : By x L4 — k, which satisfies for all x,x’ € By, v,y € L,

y,xxy = (@, )W,y and (g, x) = (y, 2@y, x D).

If h € H, then define y, € L4 by (yp, ¥) = Onj, j € H. Let (hg)ker,, denote the

canonical basis of ZM. If k € Ty; and B = By € A%, then we denote the element

Yuh, by y/(;l). Then the algebra L is generated by

{y,x:ocGHq}U{y,gN ca € O, xNe € P(By)},

by [AAR]. Moreover, by [AAR, 4.6], the following set is a basis of L:

Ly -y ™| (y,. . ) € ).
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2.2 Lyndon words, convex order and PBW-basis

For the computations in Section 4 we need some preliminaries on Kharchenko’s
PBW-basis. Let (V,q) be as above and let X be the set of words with letters in
X = {x1,...,xp} (our fixed basis of V); the empty word is 1 and for u € X we
write £(u) the length of u. We can identify kX with T(V).

Definition 2.1. Consider the lexicographic order in X. We say that u € X — {1}
is a Lyndon word if for every decomposition u = vw, v,w € X — {1}, then u < w.
We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word u € X
admits a unique decomposition, named Lyndon decomposition, as a non-increasing
product of Lyndon words:

u=1ll...l,, LeLl<---<I. 7)

Also, each [; € Lin (7) is called a Lyndon letter of u.

Now each u € L — X admits at least one decomposition u = vjv, with vy, v, €
L. Then the Shirshov decomposition of u is the decomposition u = uquy, uy,up € L,
such that u; is the smallest end of u between all possible decompositions of this
form.

For any braided vector space V, the braided bracket of x,y € T(V) is
[x, y]c := multiplication o (id —¢) (x ® y) . (8)

Using the identification T(V) = kX and the decompositions described above,
we can define a k-linear endomorphism [—]. of T (V) as follows:

u, ifu=1oru € X;
[u].:== ¢ [0, [wl]., ifueL—X, u=owits Shirshov decomposition;
[ul]c .. [ut]c, ifueX—L,u=u;y...uits Lyndon decomposition.

We will describe PBW-bases using this endomorphism.

Definition 2.2. For | € L, the element [I] . is the corresponding hyperletter. A word
written in hyperletters is an hyperword; a monotone hyperword is an hyperword
W = [ul]lc‘l ... [um]lé’” such that u; > - -+ > uyy,.

Consider now a different order on X, called deg-lex order [K]: For each pair
u,v € X, we have that u > v if l(u) < {(v), or {(u) = ¢(v) and u > v for
the lexicographical order. This order is total, the empty word 1 is the maximal
element and it is invariant by left and right multiplication.

Let I be a Hopf ideal of T(V) and R = T(V)/I. Let Tt : T(V) — R be the

canonical projection. We set:
Gy := {u EX:u@kX>u+I}.

Thus, if u € Gy and u = vw, then v, w € G;. So, each u € Gj is a non-increasing
product of Lyndon words of Gj.
LetS;:=GrNLandleth;: Sy — {2,3,...} U{oo} be defined by:

hi(u) :=min{t € N:u' € kX +1}. 9)



Lie algebras arising from Nichols algebras 21

Theorem 2.3. [K] The following set is a PBW-basis of R = T(V)/I:

(] ] s m € Nojug > ... > i, ui € S1,0 < ki < hy(ui)}. u

c

We refer to this base as Kharchenko’s PBW-basis of T(V')/I (it depends on the
order of X).

Definition 2.4. [A2, 2.6] Let AJ" be as above and let < be a total order on A;". We
say that the order is convex if for each «, B € AJ such thata < fand a + g € A,
then « < & + B < B. The order is called strongly convex if for each ordered subset
ap < ap < --- <y of elements of Agr such thata =), a; € A;, then aq < a0 < .

Theorem 2.5. [A2, 2.11] The following statements are equivalent:
o The order is convex.
o The order is strongly convex.

o The order arises from a reduced expression of a longest element w € W, cf. (4). [

Now, we have two PBW-basis of B; (and correspondingly of gq), namely
Kharchenko’s PBW-basis and the PBW-basis defined from a reduced expression
of a longest element of the Weyl groupoid. But both basis are reconciled by [AY,
Theorem 4.12], thanks to [A2, 2.14]. Indeed, each generator of Kharchenko’s
PBW-basis is a multiple scalar of a generator of the secondly mentioned PBW-
basis. So, for ease of calculations, in the rest of this work we shall use the Khar-
chenko generators.

The following proposition is used to compute the hyperword [/g]. associated
toaroot B € A

Proposition 2.6. [A2,2.17] For € A,

lg =47 if p=w i€l
P \max{lsly, : 61,60 € AL, 61+, =B,15, <lp}, ifp#w,icl m

We give a list of the hyperwords appearing in the next section:

Root Hyperword Notation
o Xi Xi
naq + o (ade x1)"x2 X1..12
o + 2 [Xa; 1y, X2)c [x12, %2]c
31+ 200 [X20y ans Xay4an)c (X112, X12]c

4oy + 300 [X30q 42000 Xag+anle  [[X112, X12)es X12]c
5000 + 30 [X2a+apr ¥3ay4+205)c (X112, [X112, X12)c]c

We use an analogous notation for the elements of £: for example we write y112 12
when we refer to the element of £ which corresponds to [x112, X12]c.
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3 Extensions of braided Hopf algebras

We recall the definition of braided Hopf algebra extensions given in [AN]; we re-
fer to [BD, GG] for more general definitions. Below we denote by A the coproduct
of a braided Hopf algebra A and by A" the kernel of the counit.

First, if 77 : C — B is a morphism of Hopf algebras in 22D, then we set

COT={ceC|(id®m)A(c) =c®1},
CTC={ceC|(m®id)A(c) =1®c}.

Definition 3.1. [AN, §2.5] Let H be a Hopf algebra. A sequence of morphisms of
Hopf algebras in EYyD

k—-AS5CEHB—k (10)
is an extension of braided Hopf algebras if
(i) ¢is injective,
(ii) 7T is surjective,
(iii) ker 7t = Ci(A™1) and
(iv) A = C%7, or equivalently A = “”C.
For simplicity, we shall write A <y ¢ % B instead of (10).

This Definition applies in our context: recall that B; ~ gq / (xﬁNﬁ , B €9Dy). Let
Z4 be the subalgebra of Eq generated by xg’g ,B € Oy. Then

o The inclusion ¢ : Z; — Eq is injective and the projection 7t : Eq — By is surjec-
tive.

o [A5, Theorem 4.10] Z; is a normal Hopf subalgebra of gq ; since ker 7t is the
two-sided ideal generated by «(Z;"), ker 7t = Bqi(Z").

o [A5, Theorem 4.13] Z; = Congq.
Hence we have an extension of braided Hopf algebras
L o~ T

The morphisms ¢ and 7 are graded. Thus, taking graded duals, we obtain a
new sequence of morphisms of braided Hopf algebras

By & Ly 3, 2
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Proposition 3.2. The sequence (2) is an extension of braided Hopf algebras.

Proof. The argument of [A, 3.3.1] can be adapted to the present situation, or more
generally to extensions of braided Hopf algebras that are graded with finite-
dimensional homogeneous components. The map 7* : By — L, is injective

because By ~ By; ¥ : L4 *» 3, is surjective being the transpose of a graded
monomorphism between two locally finite graded vector spaces. Now, since
Zg= 7By = cho T we have

ker* = LB = Bf L. (12)
Similarly EUTO‘* = B because ker nt = By. [

From now on, we assume the condition (1) on the matrix ¢ mentioned in the
Introduction, that is

T = 1, Va, B € O

The following result is our basic tool to compute the Lie algebra n,.

Theorem 3.3. The braided Hopf algebra 3, is an usual Hopf algebra, isomorphic to
the universal enveloping algebra of the Lie algebra ng = P(3,). The elements {g :=
s (y;Nﬁ))/ B € Oq, form a basis of ng.

Proof. Let Ay be the subspace of L, generated by the ordered monomials
(r1Ng, ) (rkNg; )

yﬁ,l i - Yg, %" where Bi, < -+ < B, are all the Cartan roots of B, and
Bl 'k

1,...,7x € INg. We claim that the restriction of the multiplication y : By ® Aq —

L, is an isomorphism of vector spaces. Indeed, y is surjective by the commuting

relations in L. Also, the Hilbert series of £, B, and A, are respectively:

1 1 — TNedegp
He,o= 11 Tqamp 1] T 70ep
T e, LT TP gy, 1 TAEP
1 _ TN‘Bdegﬁ
HBq - ].—[ 1 — Tdegp ’
,BkGAjl—
1
Ha = e
Aq ‘Bkeoq 1 _ TN'B deg,B

Since the multiplication is graded and H ., = Hp, Ha,, p is injective. The claim
follows and we have

Lq=Aq® B A, (13)

We next claim that /* : A; — 34 is an isomorphism of vector spaces. Indeed,
by (12), ker " = B Lq = B (ByAq) = B Aq. By (13), the claim follows.
By (1), Z4 is a commutative Hopf algebra, see [A5]; hence 3 is a cocommu-

tative Hopf algebra. Now the elements (g := (yl(gNﬁ )), B € O, are primitive,
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i.e. belong to n; = P(34). The monomials 5;11,1 ...C;kik, Bi, < -+ < Bi, € Oy
r1,...,1x € No form a basis of 3,, hence

39 =k(lp:p € Oq) SU(ng) C 3q.
We conclude that ($g)geo, is a basis of ng and that 3, = U(ny). ]

4 Proof of Theorem 1.1

In this section we consider all indecomposable matrices q of rank 2 whose associ-
ated Nichols algebra 3; is finite-dimensional; these are classified in [H2] and we
recall their diagrams in Table 1. For each q we obtain an isomorphism between
3q and U(g™), the universal enveloping algebra of the positive part of g. Here g
is the semisimple Lie algebra of the last column of Table 1, with Cartan matrix
A = (ajj)1<i j<2- By simplicity we denote g by its type, e.g. g = As.

We recall that we assume (1) and that {g = l*(yg\]ﬁ )) € 3q- Thus,

[glx,gﬁ]c :gagﬁ_gﬁga — [ga,gﬁ], fOI'aH[X,ﬁ GDq.
The strategy to prove the isomorphism § : U(g") — 34 is the following:
1. f Oy =@, then g™ = 0. If |O4| =1, then g = sl,, i.e. of type A;.

2. If |Oq] = 2, then g is of type A; & Ay. Indeed, let O = {a,B}. As 3, is
Ng-graded, [Caz‘:ﬁ] € ng has degree Nya + Ngp. Thus [g‘a,gﬂ] =0.

3. Now assume that |O4| > 2. We recall that 3, is generated by
{¢s |xg]ﬁ is a primitive element of B, }.

We compute the coproduct of all xg]ﬁ in gq, B € Og, using that A is a graded
map and Z; is a Hopf subalgebra of B;. In all cases we get two primitive

elements xg]f I'and xﬁNf ?, thus 3 is generated by ¢p, and Gg, .

4. Using the coproduct again, we check that
(ad &g,)! ~"igg, =0, 1<i#j<2 (14)

To prove (14), it is enough to observe that ny has a trivial component of degree
Ng,(1 —a;;)Bi + N g;Bj- Now (14) implies that there exists a surjective map of
Hopf algebras § : U(g") — 34 such that e; — ¢,

5. To prove that § is an isomorphism, it suffices to see that the restriction g™ —> n,
is an isomorphism; but in each case we see that * is surjective, and dim g™ =
dimng = |Oy].

We refer to [A1, AAY, A4] for the presentation, root system and Cartan roots
of braidings of standard, super and unidentified type respectively.
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Row 1. Let g € G}, N > 2. The diagram ! 4 1 corresponds to a braiding of

Cartan type Ap; whose set of positive roots is AJ = {a1, a1 + ap, an}. In this case
¢ = A and Ng = N for all B € 9. By hypothesis, g, = g3 = 1. The elements
X1,X € gq are primitive and

Alxp) =x2@14+1@x10+ (1 — 47 Hxg @ x2.
Then the coproducts of the elements xi\] , xﬁ, xé\[ € Eq are:

M) =x@l+1ex;  AX)=x 01+10x);
N(N-1)

A =xp@1+1@xh+ (11— H)Ngy 2 x @ x).

As G2, €12, [C1,C12] € ng have degree Naj + 2Nay, respectively 2Nag + Nay, and
the components of these degrees of n, are trivial, we have

[62/ 612] = [(;{1,(;{12] =0.

Again by degree considerations, there exists ¢ € k such that [§,, 1] = ¢1p. By
the duality between 3, and Z; we have that

N N(N-1)
[62,81]=(1—=9)"q, > 12
Then there exists a morphism of algebras § : U(AJ ) — 3, given by

er— G, e &
This morphism takes a basis of A to a basis of ng, s0 3 ~ U(AJ ).
Row 2. Let g € G}, N > 3. These diagrams correspond to braidings of super
type A with positive roots Al = {a1, a1 + az, as}.
The first diagram is 7 4" ~! In this case the unique Cartan root is a; with

N, = N. The element x}¥ € gq is primitive and 3 is generated by ;. Hence
3~ U(ATY).

The second diagram gives a similar situation, since O = {a1 + a5 }.
Row 3. Let g € Gy, N > 3. The diagram ’ 7> 7 corresponds to a braiding of
Cartan type By with A" = {ag,2a1 + ap, a1 + &g, a2 }. In this case Oy = AJ. The
coproducts of the generators of gq are:

Alx) =51 @1 +1®xq; Alx2) =001 +1® x;
Alxpp) =xp®14+1®@ x5+ (1 - q72) x1 @ x5
Alxip) =012 @14+ 1®@x112+ (1= (1 =97 2] @ x
+q(1—q7%) x1 @ x12.

We have two different cases depending on the parity of N.
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1. If N is odd, then Ng =N forall B € A;f. In this case,

A =V @1+10x; A = ®1+1® ),

A(x%_) :xi\]z ®1+1 ®x{\]2 +(1- q_z)Nx?]@xé\];

A(xipp) =xip @1+ 1@ x5, + (1 - HN(1 -7V @ )
+Cxi\]®xi\]2,

for some C € k. Hence, in 3; we have the relations

¢, &) = (1—q )New;

C12,61] = Cnz;

ELle=1—g HONA =g )G+ (1 -V

¢1,6112] = [62,12] = 0.

Thus there exists an algebra map § : U(B;) — 34 given by e; — &1, e2 — Co.

Moreover, § is an isomorphism, and so 34 ~ U (B;). Using the relations of U/ (B")
we check that C = 2(1 — g~ 1)N(1 —g2)N.

[
[
[
[

(2) If N = 2M > 2, then Ny, = Ny, 4, = N and Npy, 40, = Ny, = M. In this
case we have
AN =N @1+ 12, A =M o1+10
Axfy) =xfh @1+ 1@+ (1—g )NV xl @ 31
+(1— g 2)Mgh M, @ 2
A(xily) =xih @1+ 1@ xi, + (1—g HYM(1 —gq Z)MQ%(M Dxi\] © x5,

Hence, the following relations hold in 3,:

&2,6] = (1—q M1 — g Mg ™M Ve,

(G112, G0) = (1 — _2)Mq§v{ E12;
1, C112] = [82,812] = 0.

Thus § : U(C)) — 3q, e1 — &1, &2 — o, is an isomorphism of algebras. (Of
course C; ~ B; but in higher rank we will get different root systems depending
on the parity of N).

Row 4. Let g € G);, N # 2,4. These diagrams correspond to braidings of super
type B with AE:_ = {0(1,2061 + o, 001 + ao, 0(2}.

If the diagram is 7T 7~ ~! then the Cartan roots are a7 and aq + ap, with

Ny, = N, Nyj1ay, = M; here, M = N if Nis odd and M = % if N is even.
The elements xi\], x{VzI € B, are primitive in B,. Thus, in 3q, [¢12,¢1] = 0 and
39 = U((Ar @ Ap)7T).

If we consider the diagram - ! then Oq = {a, 01 + a2}, Noy = M

and Ny, 4, = N. The elements xM, x}, € gq are primitive, so [{12,¢1] = 0 and
3 = U((A1 D A)T).
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Row 5. Let ¢ € Gy, N # 3, € G}. The diagram ° 7' 7 corresponds to
a braiding of standard type By, so A:IF = {aq,201 + ap, 01 + ap,a}. The other

. ¢ g1 g7t . . . 1

diagram 9 is obtained by changing the parameter g <+ (g~ ".
The Cartan roots are 2a1 + ap and ap, with Nog, 14, = M := ord(Zg~1) and
Ny, = N. The elements x{\fz, xé\[ € By are primitive. Thus, in 3;, we have

€112, &) = 0. Hence, 3¢ ~ U((A1 & A1) 7T).

Row 6. Let { € G5. The diagrams ¢ ¢ 1and ¢ -1 correspond to

braidings of standard type B, thus A;F = {ay, 201 + ap, a1 + ap, ap }. In both cases
9, is empty so the corresponding Lie algebras are trivial.

Row 7. Let { € G/,. The diagrams of this row correspond to braidings of type
ufo(7). In all cases O4 = @ and the associated Lie algebras are trivial.
Row 8. Let { € G/,. The diagrams of this row correspond to braidings of type
2 2

ufo(8). For ¢ ¢ ¢, Ay = {a1, 20 + ag, a1 + ap, a1 + 243,42}, In this case
Oq = {a1 + a2}, Noy+a, = 12. Hence 34 ~ U(A]"). The same result holds for the
other braidings in this row.
Row 9. Let { € Gi. The diagrams of this row correspond to braidings of type
btj(2;3). If g has diagram ¢ & ¢ then

A;IF = {ay, 201 + ap, 301 + 200, 41 + ap, a1 + 202, a2}

In this case Oq = {a1, a1 + a2} and N, = Ny 44, = 18. Thus [E12,¢1] = 0, so
30~ U((A1 @ Ap)7T).
63 €8 -1 762 g -1

If g has diagram , the set of positive roots are, respectively,

{a, 2009 + ap, 301 + 200, 401 + 3w, a1 + ap, a2},
{ay, 401 + ap, 3a1 + ap, 201 + ap, 01 + (o, an };

the Cartan roots are, respectively, a1 + a2,2a1 4+ a2 and «aq,2a7 + x2. Hence, in
both cases, 3q ~ U((A1 ® A1)™).

Row 10. Letg € G, N > 4. The diagram ’ 7> 7 corresponds to a braiding of
Cartan type Gy, 50 Oq = A = {ay, a1 + &g, 201 + &g, 31 + ap, 31 + 2, a2 }. The
coproducts of the PBW-generators are:

A(xl):x1®1—i—1®x1; A(XZ):Xz(X)l—l—l@)Cz;
(x12) =212 ®14+ 1@ x1p+ (1 — 7)) 11 ® x5
(r112) = 21201+ 1@ 3112+ (1+9)(1 =g 11 @ x12
+(1-g)(1-g7)xdex;
A(x112) = 1112 @ 1+ 1@ 2112+ 7 (1 — %) 1 @ 1112

A
A
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(@ -1 =g d @+ (1-0)1-¢2)1-q") x5 @x;
A([x112, X12)c) = [X112, ¥12)e ® 1+ 1@ [x112, ¥12)e + (9 — 47) X112 @ x12

+ (1 =g )1 +q) (1 —g " +9) x0 ©x

—9921(1 = ) (1 + 9 — 7%) x1112 @ x2 + 42321 (1 — %) 31 @ [x112, X2

+(1—¢7)%(9> — 1) 1] @ xpx12

+an(1—g°)P(1-g )1 —g 0.

We have two cases.

1. If 3 does not divide N, then N =N forall B € A;f. Thus, in gq,

AY) =2 ®@14+1@x;  Ax)=x'01+10x;
AN = @1+10x a2 @+,

A(xl,) :x{\’n@1+1®xﬁ2+a2xi\]®xﬁ+a3xm®x§],‘
A(x{yp) = x1112®1 +1®x7110 +as %) © xX7p + a5 17 @ X7}

+ a6 3N @ xY;
A[x112, x12)Y) =[x, xp]N @ 1+1® [x112, x)N +az x112 ® x12
+agxiyp @ 1) a9 Xy @ x12 +a10 63" @ x3'xqy

N 2N,
+an ) @1y +ap g ©n;

for some a; € k. Since

ap=(1—q)Ngy 7 #0,
;= (1N —g )N 0,

—1\N —2\N —3\N w
a6=1-q )" (1—q )" (1—97) gy #0,
ap=(1—qg HN1—-g N1 -q%)*N £0,

N N N N . o e .
the elements x7%, x}},, 111, and [x112, ¥12];" are not primitive. Hence 3 is gener-
ated by ¢ and &; also

(82, 81] = a1 C12; 812, G1] = a2 Ci12;
[C112,81] = a4 C1112; (&1, E1112] = [E2,E12] =0

Thus, we have 3, ~ U(Gy ).
(2) If N = 3M, then Ny, = Nuytay = Nasyiay = N and Nag, +a, = Nag, 420, =

Ny, = M. In this case we have

M =xe1+1esd;, AMH=xXMo1+10x
(x15) = x1) ® 1+ 1@ x3y + by [x112, x12] " @ x3"

> >



Lie algebras arising from Nichols algebras 29

N(N-1)
+h, oM+ (1-9)Ng, 7 oM

A(x7}y) = %11 @ T+ 1@ x7}, + b3 1 @ x75 + by x%z ® [x112, x12]M
+ (1 =g HNA =gV @ M + b5 a7, © 15"
+ be x711px7 ® x5™M + by x} @ x5 [x112, x12) 2

(¥M12) = ¥ @ T+ 1@ x4, + bg 7' @ x37;

([x112, x12)2") = [xm, ) @1+ 1® [x112, x10)
+boxp @ x3M + big x111p © 17

A
A

for some b; € k. We compute some of them explicitly:
—3\M -2\M _1ym MUY
bg=(1—g )" (1—qg )" (A—q )"qy * ,
by = (1—q°)"M(1—g M1 — g7 ")Mg3.
As these scalars are not zero, the elements xi\]z, xﬁz, xﬁllz and [x112, xlz]éw are not
primitive. Thus 34 >~ U(G5).

Row 11. Let { € Gj. The diagrams of this row correspond to braidings of stan-
dard type Gy, so Aj = {1, 31 + @, 201 + ap, a1 + 200, 1 + o, 42}

If q has diagram AN , then the Cartan roots are 2aq7 + a» and a, with

Noa,+a, = Na, = 8. The elements x¥,, x5 € Eq are primitive and [&,, {112] = 0 in
3q. Hence 34 ~ U((A1 ® A1)™). Ananalogous result holds for the other diagrams
of the row.

Row 12. Let { € G),. This row corresponds to type ufo(9). If q has diagram

¢ 2 , then

AE:_ = {061,3061 + ao, 2001 + wo, 3 + 20p, 41 + 3ap, wq + ap, a4 2ap, 0(2}

and Oq = {a3 + ap, 301 + a2 }. Here, Ny, 40, = Nagy1a, = 24, and x35, x37,, € By

are primitive. In 3, we have the relation [¢1p,{1112] = 0; thus 34 ~ U((A1 &
A)7T).
. z° ! SIS ¢ o -1
For the other diagrams, ¢ , ¢ land ¢ , the sets of

positive roots are, respectively,

{061, a1 + ao, 2001 + wo, 301 + ap, 31 + 200p, by + 2, 51 + 3, 062},
{o1, @1 + ap, 201 + ap, 30y + 2009, 4oy + 3o, 5 + 3wg, Sy + 4an, ),
{a1, a1 4+ ap, 201 + ap, Beeq + ap, g + ap, 51 + ag, Sy + 200, ap b

The Cartan roots are, respectively, 201 + ap, ap; a1 + ap, 51 + 3ap; a1, 501 + 2a5.
Hence, in all cases, 34 ~ U((A1 & A1)7T).

Row 13. Let { € Gi. The braidings in this row are associated to the Lie super-

algebra btj(2;5) [A5, §5.2]. If q has diagram ¢ 71 then A;IF = {ay,3001 +
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ap, 201 + ao, 5y + 3ap, 301 + 200, 4y + 3, 1 + ap, ). In this case the Cartan
roots are wq, &1 + &, 204 + @ and 3a; + ap, with Ny, = N3y 420, = 5 and
Na 2y = Nawytay = 10. In By,
Alx) =11 @1+1®xq;
Alx12) =22 ®@ 14+ 1@ 315 + (1 — %) 11 @ x5
Alxi2) = x12®@1+1@x112+ (14+0)(1 — ) x1 @ x12
L1-P)-P)Bex
A([x112, *12]¢) = [*112, X¥12]c ® 1+ 1 ® [x112, X12]C
— A=) 1+ 01 @xf — {421 x1¥112 @ X2
+ (14 g1 + 2g21) x112%1 @ X2 + {(1 = ) x1x10%1 ® X2
+ (1= (1= 2°)* 2} @ xpx12.

Hence the coproducts of xl, x%g, x%(fz, [x112, x12]2, € B, are:

Ax) _x1®1+1®x1, A(x3) = x12®1+1®xlzr
(xih) = 61 ® 1+ 1@ x15 + a1 x1° @ %19 + a2 1] ® [x112, x12]2

A
A([x112, ¥12]2) = [¥112, X122 ® 1+ 1 ® [x112, X12)2 + a3 xl ® x12

for some a; € k. Thus, the following relations hold in 3

[C12,C1] = a3 G212, [Cr1212,C1] = a2 811 [C1, Criz12] = (G2, C112] =
Since

a1 =— (1-2°)°(1+2)°(1+ 627 — 157> — 87¢° +707*) # 0;
a3 =—(1-0°)°(1+¢)°(4 — 87 —19¢* —3¢° — 505%) # 0,

the elements x%(l)z, [x112, X12]2 are not primitive, so ¢, &1o generate 3. Hence, 34 ~
U(By).
. 7%3 €3 —1
If g has diagram , then

AE:_ = {0(1,4061 + ap, 31 + o, S + 200, 2001 + wp, 31 + 2000, k1 + o, 0(2},
Oq = {a1,3a1 + ap, 207 + ap, 01 + a2},

with Ny, = Ny, = 10, N3y, 14, = Naytap = 5. In By

>

(x1) =11 ®1+1®x;

(x12) =212 @1+ 1@ x12 4 (1 - %) x1 @ xp;

(r112) = X112 @ 1+ 1@ 2112+ (14 7)(1 = ) 11 @ 112
+(1+)(1-P)xfoxy

Alxnn) =112 @1+ 1@ x + (14— %) (1= ) 11 @ x112

+(1+014+7-2) 1 -G @x+(1+0)1-)1 -7 x @ x.

A
A
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5 10
Hence the coproducts of x1 s X375, X110/ x1112/ S Bq are:

Y =x091+1021% AR =x5,01+10x,;

(x112) = ¥ @1+ 1@ x10, — (1+)°(1 = ®)°x3, @ 27,
F(1+0)10(1 = 23)10 410 @ 410,

(F112) = ¥ @ 1+ 1@ 2717, + (14+0)°(1 = £°)°x° @ 2,

A
A

>

Thus, the generators of 3, are ¢; and {1, and they satisfy the following relations

[G12,61] = (1+9)"°(1 = 8°)°Cua,
[E1112,812] = —(14+2)°(1 = 2°)°C1n2,
81, C1112) = [C12,C112] = 0.

Hence 34 ~ U(C; ).

Row 14. Let { € GJ,. This row corresponds to type ufo(10). If g has diagram

€07 71 then Ay = {a1, 3 + &g, 20 + &g, 5y + 3w, 3y + 2ap, 4y + 3, aq +
ap, 00} The Cartan roots are a1 and 3aq + 2ar with Ny, = N3y, 424, = 20. The
elements x1 ,[x112, x12]2° € B are primitive; thus [G12, {112,12) = 0 in 34 and 34 ~
U((A1 & A1)T). The same holds when the diagram of q is another one in this
row: 3¢ ~ U((A1 ® Ap)7T).

Row 15. Let { € G/5. This row corresponds to type ufo(11). If g has diagram
028 then A;IF = {1,301 + ap, 5evq + 200, 201 + ap, 30 + 200, 41 + ap, 01 +

20y, a9 }. The Cartan roots are a1 and 3wy + 2ay with Ny, = Nag, 424, = 30. In 3
we have [¢1, 112,12] = 0, thus 34 ~ U((A1 @ A1)T). The same result holds if we
consider the other diagrams of this row.

Row 16. Let { € G/, This row corresponds to type ufo(12). If q has diagram

—7° 5 -1
= , then

AT = {ay, 5ag + g, 4a1 + ap, 7oy + 209, Bt + g, 8y + Baxy,
Sa1 + 200, 7001 4 30p, 2001 + ap, 30 + 2000, 07 + a2, 062}.

Also, Dq = {061,4061 + ap, 301 + ap, Sy + 200, 2001 + @, a1 + 062} with N,B = 14 for
allp € O4. In gq we have

(1)) =r1®@1+1®@x;

(x12) =212 @1+ 1@ x1p 4+ (14 %) x1 @ xp;5

(r112) = 2112 @1+ 1@ 2112+ (1 =) (1 = °) x1 @ x12
+(1-0A+P)@xy

Alx1112) = x1112 @ 1+ 1@ 29312 + (14 = ) (14 2°) 11 @ 3112
+(P -+ 01 -7)1+0)x@xy

> > >
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Alxiz) = ¥ ® 1+ 1@ xq11120 — (1 — ¢)(1 — £%) 21 ® 21112
F (2420 -+ 0)xd@x— (1-0)(1 - 2)*x @ x2
+P(1-0)(1 =37 xf @ x;

A([x1112, X112]0) = [X1112, X112) @ 1+ 1@ [¥1112, X112]C

(1-2°)
(1+7)
—g21(1=0)(1 = 3°) 2§ © [x112, X12)ec
—(1—-0)* (4447 + 2% —20° = 30*) ] @ x21112
o (1= 32)%¢H(1 =20 = 30" —20° +0°) xf @ xd
+(1-0*0+3)*1+2%) 2 @xoxn
—(1-0)(1 - *) xm2 ® X112
—g210°(1=0)*(1 = %) (1 4 20) x} ® xx15
+0 (10?1 -1+ %) g @3
— g1+ )1 -1 =" +2°) 11112 @ 12
+ 20 (1+22) 1 =01 =) 1+ — %) x11201 @ X2
—(1-02A+)(1 -7 -2 =) x112x] © 22
+ (1= 4+ - =) x111201 ® 112
+2021(1 = 0)*(2+ ¢ — 3°) x11112 © X712

(1-+20") 1 ®xfy,

Hence
AxY) =x*@1+10x%  Alx) =23 @1+ 1@ xp;
A(xiT) = 1 @ 1+ 1@ x11, + a1 41" ® 135
A(x1f1p) = X112 ® 1 + 1@ x{f1p + a2 X1* @ x{], + a3 13° @ x{3;
14 14 14 14 o 14
A(xi1112) = *17112 @ T+ 1@ x97915 + a4 X7” @ X770

+ a5 X" @ X115 + 86 17 © x13;
14 14 14 14 14
A([x1112, X112)¢ ) = [*1112, ¥112)¢” @ 1+ 1@ [x1112, X112) ¢ + 47 X1710 @ X153
14 14 42 o 28 14 o .28
+ a8 X11112 @ X1 + a9 X197 @ X7 +a10 X1 @ X771

>

+an 63° @ xipx1p + 4 XAy © 113
with a; € k. For instance,

a1 = g5, (—23527° + 25487* + 254873 — 235272 + 4067) # 0,
because { € G/. Also,

a3 = 58608137° + 9745897 — 31646587° + 360910972
+ 52439177 — 1667869 # 0;

a6 = 5, (100743850529427° 4 319102895098897* 4 121180101527527°
— 9095001445607 + 246805708025317 + 26319432020966) # 0;



Lie algebras arising from Nichols algebras 33

a9 = 57364826781859494247° + 108086064863931127967*

4 28143681837259848447° + 13000446293377084647>
+9968706251262033856( + 7625687982247823061 # 0.

14

Then x4 x%‘lllz, X11112 and [x1112, x112)1* are not primitive elements in ;. Thus,

1127

¢1 and ¢1o generates 3.
Also, in 3 we have

[G12,C1] = a1 Cin2; (81, C112] = a2 C1112;
(81, C1112] = a4 Ci112; 81, G11112] = [G12,C112] = 0.

So, 3¢ ~ U(GS).

In the case of the diagram ~—° —¢* ! 34 is generated by {1, {12 and
[G12,G1] = b1 Ci12; (812, G112] = b2 C112,12;
(€12, C112,12] = b3 8 (11212125 €1, G112] = [€12,8(11212)12) = O,

where by, by, by € k*. Hence, we also have 3, ~ U(G, ).

Remark 4.1. The results of this paper are part of the thesis of one of the authors
[RB], where missing details of the computations can be found.
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