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Abstract

Let Bq be a finite-dimensional Nichols algebra of diagonal type corre-
sponding to a matrix q ∈ kθ×θ. Let Lq be the Lusztig algebra associated to Bq

[AAR]. We present Lq as an extension (as braided Hopf algebras) of Bq by Zq

where Zq is isomorphic to the universal enveloping algebra of a Lie algebra
nq. We compute the Lie algebra nq when θ = 2.

1 Introduction

1.1 Let k be a field, algebraically closed and of characteristic zero. Let θ ∈ N,
I = Iθ := {1, 2, ..., θ}. Let q = (qij)i,j∈I be a matrix with entries in k×, V a vector
space with a basis (xi)i∈I and cq ∈ GL(V ⊗ V) be given by

cq(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I.

Then (cq ⊗ id)(id⊗cq)(cq ⊗ id) = (id⊗cq)(cq ⊗ id)(id⊗cq), i.e. (V, cq) is a
braided vector space and the corresponding Nichols algebra Bq := B(V) is called
of diagonal type. Recall that Bq is the image of the unique map of braided Hopf
algebras Ω : T(V) → Tc(V) from the free associative algebra of V to the free
associative coalgebra of V, such that Ω|V = idV . For unexplained terminology
and notation, we refer to [AS].
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Remarkably, the explicit classification of all q such that dimBq < ∞ is known
[H2] (we recall the list when θ = 2 in Table 1). Also, for every q in the list of [H2],
the defining relations are described in [A2, A3].

1.2 Assume that dimBq < ∞. Two infinite dimensional graded braided Hopf

algebras B̃q and Lq (the Lusztig algebra of V) were introduced and studied in

[A3, A5], respectively [AAR]. Indeed, B̃q is a pre-Nichols, and Lq a post-Nichols,

algebra of V, meaning that B̃q is intermediate between T(V) and Bq, while Lq is
intermediate between Bq and Tc(V). This is summarized in the following com-
mutative diagram:

T(V)

Ω

**
//

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
Bq

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
// Tc(V)

B̃q

π

??
⑧
⑧
⑧
⑧
⑧
⑧
⑧

Lq

<<③③③③③③③③③

The algebras B̃q and Lq are generalizations of the positive parts of the De Concini-
Kac-Procesi quantum group, respectively the Lusztig quantum divided powers

algebra. The distinguished pre-Nichols algebra B̃q is defined discarding some of

the relations in [A3], while Lq is the graded dual of B̃q.

1.3 The following notions are discussed in Section 2. Let ∆
q
+ be the generalized

positive root system of Bq and let Oq ⊂ ∆
q
+ be the set of Cartan roots of q. Let

xβ be the root vector associated to β ∈ ∆
q
+, let Nβ = ord qββ and let Zq be the

subalgebra of B̃q generated by x
Nβ

β , β ∈ Oq. By [A5, Theorems 4.10, 4.13], Zq is

a braided normal Hopf subalgebra of B̃q and Zq = co πB̃q. Actually, Zq is a true
commutative Hopf algebra provided that

q
Nβ

αβ = 1, ∀α, β ∈ Oq. (1)

Let Zq be the graded dual of Zq; under the assumption (1) Zq is a cocommuta-
tive Hopf algebra, hence it is isomorphic to the enveloping algebra U (nq) of the
Lie algebra nq := P(Zq). We show in Section 3 that Lq is an extension (as braided
Hopf algebras) of Bq by Zq:

Bq
π∗

→֒ Lq
ι∗

։ Zq. (2)

The main result of this paper is the determination of the Lie algebra nq when
θ = 2 and the generalized Dynkin diagram of q is connected.

Theorem 1.1. Assume that dimBq < ∞ and θ = 2. Then nq is either 0 or isomorphic
to g+, where g is a finite-dimensional semisimple Lie algebra listed in the last column of
Table 1.
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Assume that there exists a Cartan matrix a = (aij) of finite type, that becomes
symmetric after multiplying with a diagonal (di), and a root of unit q of odd order

(and relatively prime to 3 if a is of type G2) such that qij = qdiaij for all i, j ∈ I.
Then (2) encodes the quantum Frobenius homomorphism defined by Lusztig and
Theorem 1.1 is a result from [L].

The penultimate column of Table 1 indicates the type of q as established in
[AA]. Thus, we associate Lie algebras in characteristic zero to some contragredi-
ent Lie (super)algebras in positive characteristic. In a forthcoming paper we shall
compute the Lie algebra nq for θ > 2.

1.4 The paper is organized as follows. We collect the needed preliminary ma-
terial in Section 2. Section 3 is devoted to the exactness of (2). The computations
of the various nq is the matter of Section 4. We denote by GN the group of N-th
roots of 1, and by G′

N its subset of primitive roots.

2 Preliminaries

2.1 The Nichols algebra, the distinguished-pre-Nichols algebra and the

Lusztig algebra

Let q be as in the Introduction and let (V, cq) be the corresponding braided vector
space of diagonal type. We assume from now on that Bq is finite-dimensional.
Let (αj)j∈I be the canonical basis of Z

θ . Let q : Z
θ × Z

θ → k× be the Z-bilinear

form associated to the matrix q, i.e. q(αj, αk) = qjk for all j, k ∈ I. If α, β ∈ Zθ , we

set qαβ = q(α, β). Consider the matrix (cqij)i,j∈I, cij ∈ Z defined by cqii = 2,

cqij := −min
{

n ∈ N0 : (n + 1)qii
(1 − qn

iiqijqji) = 0
}

, i 6= j. (3)

This is well-defined by [R]. Let i ∈ I. We recall the following definitions:

⋄ The reflection sqi ∈ GL(Zθ), given by sqi (αj) = αj − cqijαi, j ∈ I.

⋄ The matrix ρi(q), given by ρi(q)jk = q(sqi (αj), sqi (αk)), j, k ∈ I.

⋄ The braided vector space ρi(V) of diagonal type with matrix ρi(q).

A basic result is that Bq ≃ Bρi(q)
, at least as graded vector spaces.

The algebras T(V) and Bq are Zθ-graded by deg xi = αi, i ∈ I. Let ∆
q
+ be the

set of Zθ-degrees of the generators of a PBW-basis of Bq, counted with multiplic-
ities [H1]. The elements of ∆

q
+ are called (positive) roots. Let ∆q = ∆

q
+ ∪ −∆

q
+.

Let

X := {ρj1 . . . ρjN
(q) : j1, . . . , jN ∈ I, N ∈ N}.

Then the generalized root system of q is the fibration ∆ → X , where the fiber of

ρj1 . . . ρjN
(q) is ∆

ρj1
...ρjN

(q). The Weyl groupoid of Bq is a groupoid, denoted Wq,
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Row Generalized Dynkin diagrams parameters Type of Bq nq ≃ g+

1 ❡ ❡
q q−1 q q 6= 1 Cartan A A2

2 ❡ ❡
q q−1 −1

❡ ❡
−1 q −1 q 6= ±1 Super A A1

3 ❡ ❡
q q−2 q2

q 6= ±1 Cartan B B2

4 ❡ ❡
q q−2 −1

❡ ❡
−q−1

q2 −1 q /∈ G4 Super B A1 ⊕ A1

5 ❡ ❡
ζ q−1 q

❡ ❡
ζ ζ−1q ζq−1

ζ ∈ G3 6∋ q br(2, a) A1 ⊕ A1

6 ❡ ❡
ζ −ζ −1

❡ ❡
ζ−1

−ζ−1 −1 ζ ∈ G′
3 Standard B 0

7 ❡ ❡
−ζ−2

−ζ3 −ζ2

❡ ❡
−ζ−2

ζ−1 −1
❡ ❡

−ζ2
−ζ −1 ζ ∈ G′

12 ufo(7) 0

❡ ❡
−ζ3

ζ −1
❡ ❡

−ζ3
−ζ−1 −1

8 ❡ ❡
−ζ2

ζ −ζ2

❡ ❡
−ζ2

ζ3 −1
❡ ❡

−ζ−1
−ζ3 −1 ζ ∈ G′

12 ufo(8) A1

9 ❡ ❡
−ζ ζ−2 ζ3

❡ ❡
ζ3

ζ−1 −1
❡ ❡

−ζ2
ζ −1 ζ ∈ G′

9 brj(2; 3) A1 ⊕ A1

10 ❡ ❡
q q−3 q3

q /∈ G2 ∪ G3 Cartan G2 G2

11 ❡ ❡
ζ2

ζ ζ−1

❡ ❡
ζ2

−ζ−1 −1
❡ ❡
ζ −ζ −1 ζ ∈ G′

8 Standard G2 A1 ⊕ A1

12 ❡ ❡
ζ6

−ζ−1−ζ−4

❡ ❡
ζ6

ζ ζ−1

ζ ∈ G′
24 ufo(9) A1 ⊕ A1

❡ ❡
−ζ−4

ζ5 −1
❡ ❡

ζ ζ−5 −1

13 ❡ ❡
ζ ζ2 −1

❡ ❡
−ζ−2

ζ−2 −1 ζ ∈ G′
5 brj(2; 5) B2

14 ❡ ❡
ζ ζ−3 −1

❡ ❡
−ζ −ζ−3 −1 ζ ∈ G′

20 ufo(10) A1 ⊕ A1

❡ ❡
−ζ−2

ζ3 −1
❡ ❡

−ζ−2
−ζ3 −1

15 ❡ ❡
−ζ −ζ−3 ζ5

❡ ❡
ζ3

−ζ4−ζ−4

ζ ∈ G′
15 ufo(11) A1 ⊕ A1

❡ ❡
ζ5

−ζ−2 −1
❡ ❡

ζ3
−ζ2 −1

16 ❡ ❡
−ζ −ζ−3 −1

❡ ❡
−ζ−2

−ζ3 −1 ζ ∈ G′
7 ufo(12) G2

Table 1: Lie algebras arising from Dynkin diagrams of rank 2.
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that acts on this fibration, generalizing the classical Weyl group, see [H1]. We
know from loc. cit. that Wq is finite (and this characterizes finite-dimensional
Nichols algebras of diagonal type).

Here is a useful description of ∆
q
+. Let w ∈ Wq be an element of maximal

length. We fix a reduced expression w = σq
i1

σi2 · · · σiM
. For 1 ≤ k ≤ M set

βk = sqi1 · · · sik−1
(αik

), (4)

Then ∆
q
+ = {βk|1 ≤ k ≤ M} [CH, Prop. 2.12]; in particular |∆q

+| = M.

The notion of Cartan root is instrumental for the definitions of B̃q and Lq.
First, following [A5] we say that i ∈ I is a Cartan vertex of q if

qijqji = q
cqij
ii , for all j 6= i, (5)

Then the set of Cartan roots of q is

Oq = {sqi1 si2 . . . sik
(αi) ∈ ∆

q
+ : i ∈ I is a Cartan vertex of ρik

. . . ρi2ρi1(q)}.

Given a positive root β ∈ ∆
q
+, there is an associated root vector xβ ∈ Bq

defined via the so-called Lusztig isomorphisms [H3]. Set Nβ = ord qββ ∈ N,

β ∈ ∆
q
+. Also, for h = (h1, . . . , hM) ∈ NM

0 we write

xh = xhM
βM

x
hM−1

βM−1
· · · xh1

β1
.

Let Ñk =

{
Nβk

if βk /∈ Oq,

∞ if βk ∈ Oq.
. For simplicity, we introduce

H = {h ∈ N
M
0 : 0 ≤ hk < Ñk, for all k ∈ IM}. (6)

By [A5, Theorem 3.6] the set {xh | h ∈ H} is a basis of B̃q.

As said in the Introduction, the Lusztig algebra associated to Bq is the braided

Hopf algebra Lq which is the graded dual of B̃q. Thus, it comes equipped with a

bilinear form 〈 , 〉 : B̃q ×Lq → k, which satisfies for all x, x′ ∈ B̃q, y, y′ ∈ Lq

〈y, xx′〉 = 〈y(2), x〉〈y(1), x′〉 and 〈yy′, x〉 = 〈y, x(2)〉〈y′, x(1)〉.

If h ∈ H, then define yh ∈ Lq by 〈yh, xj〉 = δh,j, j ∈ H. Let (hk)k∈IM
denote the

canonical basis of Z
M. If k ∈ IM and β = βk ∈ ∆

q
+, then we denote the element

ynhk
by y

(n)
β . Then the algebra Lq is generated by

{yα : α ∈ Πq} ∪ {y
(Nα)
α : α ∈ Oq, xNα

α ∈ P(B̃q)},

by [AAR]. Moreover, by [AAR, 4.6], the following set is a basis of Lq:

{y
(h1)
β1

· · · y
(hM)
βM

| (h1, . . . , hM) ∈ H}.
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2.2 Lyndon words, convex order and PBW-basis

For the computations in Section 4 we need some preliminaries on Kharchenko’s
PBW-basis. Let (V, q) be as above and let X be the set of words with letters in
X = {x1, . . . , xθ} (our fixed basis of V); the empty word is 1 and for u ∈ X we
write ℓ(u) the length of u. We can identify kX with T(V).

Definition 2.1. Consider the lexicographic order in X. We say that u ∈ X − {1}
is a Lyndon word if for every decomposition u = vw, v, w ∈ X − {1}, then u < w.
We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word u ∈ X

admits a unique decomposition, named Lyndon decomposition, as a non-increasing
product of Lyndon words:

u = l1l2 . . . lr, li ∈ L, lr ≤ · · · ≤ l1. (7)

Also, each li ∈ L in (7) is called a Lyndon letter of u.
Now each u ∈ L− X admits at least one decomposition u = v1v2 with v1, v2 ∈

L. Then the Shirshov decomposition of u is the decomposition u = u1u2, u1, u2 ∈ L,
such that u2 is the smallest end of u between all possible decompositions of this
form.

For any braided vector space V, the braided bracket of x, y ∈ T(V) is

[x, y]c := multiplication ◦ (id−c) (x ⊗ y) . (8)

Using the identification T(V) = kX and the decompositions described above,
we can define a k-linear endomorphism [−]c of T(V) as follows:

[u]c :=





u, if u = 1 or u ∈ X;

[[v]c , [w]c]c , if u ∈ L − X, u = vw its Shirshov decomposition;

[u1]c . . . [ut]c, if u ∈ X − L, u = u1 . . . ut its Lyndon decomposition.

We will describe PBW-bases using this endomorphism.

Definition 2.2. For l ∈ L, the element [l]c is the corresponding hyperletter. A word
written in hyperletters is an hyperword; a monotone hyperword is an hyperword

W = [u1]
k1
c . . . [um]

km
c such that u1 > · · · > um.

Consider now a different order on X, called deg-lex order [K]: For each pair
u, v ∈ X, we have that u ≻ v if ℓ(u) < ℓ(v), or ℓ(u) = ℓ(v) and u > v for
the lexicographical order. This order is total, the empty word 1 is the maximal
element and it is invariant by left and right multiplication.

Let I be a Hopf ideal of T(V) and R = T(V)/I. Let π : T(V) → R be the
canonical projection. We set:

GI := {u ∈ X : u /∈ kX≻u + I} .

Thus, if u ∈ GI and u = vw, then v, w ∈ GI. So, each u ∈ GI is a non-increasing
product of Lyndon words of GI.

Let SI := GI ∩ L and let hI : SI → {2, 3, . . . } ∪ {∞} be defined by:

hI(u) := min
{

t ∈ N : ut ∈ kX≻ut + I
}

. (9)
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Theorem 2.3. [K] The following set is a PBW-basis of R = T(V)/I:

{[u1]
k1
c . . . [um]

km
c : m ∈ N0, u1 > . . . > um, ui ∈ SI , 0 < ki < hI(ui)}. �

We refer to this base as Kharchenko’s PBW-basis of T(V)/I (it depends on the
order of X).

Definition 2.4. [A2, 2.6] Let ∆+
q be as above and let < be a total order on ∆+

q . We
say that the order is convex if for each α, β ∈ ∆+

q such that α < β and α + β ∈ ∆+
q ,

then α < α + β < β. The order is called strongly convex if for each ordered subset
α1 ≤ α2 ≤ · · · ≤ αk of elements of ∆+

q such that α = ∑i αi ∈ ∆+
q , then α1 < α < αk.

Theorem 2.5. [A2, 2.11] The following statements are equivalent:

• The order is convex.

• The order is strongly convex.

• The order arises from a reduced expression of a longest element w ∈ Wq, cf. (4).

Now, we have two PBW-basis of Bq (and correspondingly of B̃q), namely
Kharchenko’s PBW-basis and the PBW-basis defined from a reduced expression
of a longest element of the Weyl groupoid. But both basis are reconciled by [AY,
Theorem 4.12], thanks to [A2, 2.14]. Indeed, each generator of Kharchenko’s
PBW-basis is a multiple scalar of a generator of the secondly mentioned PBW-
basis. So, for ease of calculations, in the rest of this work we shall use the Khar-
chenko generators.

The following proposition is used to compute the hyperword [lβ]c associated

to a root β ∈ ∆+
q :

Proposition 2.6. [A2, 2.17] For β ∈ ∆+
q ,

lβ =

{
xαi

, if β = αi, i ∈ I;

max{lδ1
lδ2

: δ1, δ2 ∈ ∆+
q , δ1 + δ2 = β, lδ1

< lδ2
}, if β 6= αi, i ∈ I.

We give a list of the hyperwords appearing in the next section:

Root Hyperword Notation
αi xi xi

nα1 + α2 (adc x1)
nx2 x1...12

α1 + 2α2 [xα1+α2 , x2]c [x12, x2]c
3α1 + 2α2 [x2α1+α2

, xα1+α2 ]c [x112, x12]c
4α1 + 3α2 [x3α1+2α2

, xα1+α2 ]c [[x112, x12]c, x12]c
5α1 + 3α2 [x2α1+α2

, x3α1+2α2
]c [x112, [x112, x12]c]c

We use an analogous notation for the elements of Lq: for example we write y112,12

when we refer to the element of Lq which corresponds to [x112, x12]c.
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3 Extensions of braided Hopf algebras

We recall the definition of braided Hopf algebra extensions given in [AN]; we re-
fer to [BD, GG] for more general definitions. Below we denote by ∆ the coproduct
of a braided Hopf algebra A and by A+ the kernel of the counit.

First, if π : C → B is a morphism of Hopf algebras in H
HYD, then we set

C co π = {c ∈ C | (id⊗π)∆(c) = c ⊗ 1},
co πC = {c ∈ C | (π ⊗ id)∆(c) = 1 ⊗ c}.

Definition 3.1. [AN, §2.5] Let H be a Hopf algebra. A sequence of morphisms of
Hopf algebras in H

HYD

k → A
ι
→ C

π
→ B → k (10)

is an extension of braided Hopf algebras if

(i) ι is injective,

(ii) π is surjective,

(iii) ker π = Cι(A+) and

(iv) A = C co π, or equivalently A = co πC.

For simplicity, we shall write A
ι
→֒ C

π
։ B instead of (10).

This Definition applies in our context: recall that Bq ≃ B̃q/〈x
Nβ

β , β ∈ Oq〉. Let

Zq be the subalgebra of B̃q generated by x
Nβ

β , β ∈ Oq. Then

◦ The inclusion ι : Zq → B̃q is injective and the projection π : B̃q → Bq is surjec-
tive.

◦ [A5, Theorem 4.10] Zq is a normal Hopf subalgebra of B̃q; since ker π is the

two-sided ideal generated by ι(Z+
q ), ker π = B̃qι(Z+

q ).

◦ [A5, Theorem 4.13] Zq = co πB̃q.

Hence we have an extension of braided Hopf algebras

Zq
ι
→֒ B̃q

π
։ Bq. (11)

The morphisms ι and π are graded. Thus, taking graded duals, we obtain a
new sequence of morphisms of braided Hopf algebras

Bq
π∗

→֒ Lq
ι∗

։ Zq. (2)
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Proposition 3.2. The sequence (2) is an extension of braided Hopf algebras.

Proof. The argument of [A, 3.3.1] can be adapted to the present situation, or more
generally to extensions of braided Hopf algebras that are graded with finite-
dimensional homogeneous components. The map π∗ : Bq → Lq is injective

because Bq ≃ B∗
q ; ι∗ : Lq

ι∗
→ Zq is surjective being the transpose of a graded

monomorphism between two locally finite graded vector spaces. Now, since

Zq =
co πB̃q = B̃ co π

q , we have

ker ι∗ = LqB
+
q = B+

q Lq. (12)

Similarly L co ι∗
q = B∗

q because ker π⊥ = Bq.

From now on, we assume the condition (1) on the matrix q mentioned in the
Introduction, that is

q
Nβ

αβ = 1, ∀α, β ∈ Oq.

The following result is our basic tool to compute the Lie algebra nq.

Theorem 3.3. The braided Hopf algebra Zq is an usual Hopf algebra, isomorphic to
the universal enveloping algebra of the Lie algebra nq = P(Zq). The elements ξβ :=

ι∗(y
(Nβ)

β ), β ∈ Oq, form a basis of nq.

Proof. Let Aq be the subspace of Lq generated by the ordered monomials

y
(r1 Nβi1

)

βi1
. . . y

(rk Nβik
)

βik
where βi1 < · · · < βik

are all the Cartan roots of Bq and

r1, . . . , rk ∈ N0. We claim that the restriction of the multiplication µ : Bq ⊗ Aq →
Lq is an isomorphism of vector spaces. Indeed, µ is surjective by the commuting
relations in Lq. Also, the Hilbert series of Lq, Bq and Aq are respectively:

HLq
= ∏

βk∈Oq

1

1 − Tdeg β
. ∏

βk /∈Oq

1 − TNβ deg β

1 − Tdeg β
;

HBq
= ∏

βk∈∆+
q

1 − TNβ deg β

1 − Tdeg β
;

HAq
= ∏

βk∈Oq

1

1 − TNβ deg β
.

Since the multiplication is graded and HLq
= HBq

HAq
, µ is injective. The claim

follows and we have

Lq = Aq ⊕B+
q Aq. (13)

We next claim that ι∗ : Aq → Zq is an isomorphism of vector spaces. Indeed,
by (12), ker ι∗ = B+

q Lq = B+
q (BqAq) = B+

q Aq. By (13), the claim follows.
By (1), Zq is a commutative Hopf algebra, see [A5]; hence Zq is a cocommu-

tative Hopf algebra. Now the elements ξβ := ι∗(y
(Nβ)

β ), β ∈ Oq, are primitive,
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i.e. belong to nq = P(Zq). The monomials ξ
r1
βi1

. . . ξ
rk
βik

, βi1 < · · · < βik
∈ Oq,

r1, . . . , rk ∈ N0 form a basis of Zq, hence

Zq = k〈ξβ : β ∈ Oq〉 ⊆ U (nq) ⊆ Zq.

We conclude that (ξβ)β∈Oq
is a basis of nq and that Zq = U (nq).

4 Proof of Theorem 1.1

In this section we consider all indecomposable matrices q of rank 2 whose associ-
ated Nichols algebra Bq is finite-dimensional; these are classified in [H2] and we
recall their diagrams in Table 1. For each q we obtain an isomorphism between
Zq and U (g+), the universal enveloping algebra of the positive part of g. Here g

is the semisimple Lie algebra of the last column of Table 1, with Cartan matrix
A = (aij)1≤i,j≤2. By simplicity we denote g by its type, e.g. g = A2.

We recall that we assume (1) and that ξβ = ι∗(y
(Nβ)

β ) ∈ Zq. Thus,

[ξα, ξβ]c = ξαξβ − ξβξα = [ξα, ξβ], for all α, β ∈ Oq.

The strategy to prove the isomorphism F : U (g+) → Zq is the following:

1. If Oq = ∅, then g+ = 0. If |Oq| = 1, then g = sl2, i.e. of type A1.

2. If |Oq| = 2, then g is of type A1 ⊕ A1. Indeed, let Oq = {α, β}. As Zq is
Nθ

0-graded, [ξα, ξβ] ∈ nq has degree Nαα + Nββ. Thus [ξα, ξβ] = 0.

3. Now assume that |Oq| > 2. We recall that Zq is generated by

{ξβ|x
Nβ

β is a primitive element of B̃q}.

We compute the coproduct of all x
Nβ

β in B̃q, β ∈ Oq, using that ∆ is a graded

map and Zq is a Hopf subalgebra of B̃q. In all cases we get two primitive

elements x
Nβ1
β1

and x
Nβ2
β2

, thus Zq is generated by ξβ1
and ξβ2

.

4. Using the coproduct again, we check that

(ad ξβi
)1−aijξβj

= 0, 1 ≤ i 6= j ≤ 2. (14)

To prove (14), it is enough to observe that nq has a trivial component of degree
Nβi

(1 − aij)βi + Nβj
β j. Now (14) implies that there exists a surjective map of

Hopf algebras F : U (g+) ։ Zq such that ei 7→ ξβi
.

5. To prove that F is an isomorphism, it suffices to see that the restriction g+
∗
→ nq

is an isomorphism; but in each case we see that ∗ is surjective, and dim g+ =
dim nq = |Oq|.

We refer to [A1, AAY, A4] for the presentation, root system and Cartan roots
of braidings of standard, super and unidentified type respectively.
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Row 1. Let q ∈ G′
N, N ≥ 2. The diagram ❡ ❡

q q−1 q corresponds to a braiding of

Cartan type A2 whose set of positive roots is ∆+
q = {α1, α1 + α2, α2}. In this case

Oq = ∆+
q and Nβ = N for all β ∈ Oq. By hypothesis, qN

12 = qN
21 = 1. The elements

x1, x2 ∈ B̃q are primitive and

∆(x12) = x12 ⊗ 1 + 1 ⊗ x12 + (1 − q−1)x1 ⊗ x2.

Then the coproducts of the elements xN
1 , xN

12, xN
2 ∈ B̃q are:

∆(xN
1 ) = xN

1 ⊗ 1 + 1 ⊗ xN
1 ; ∆(xN

2 ) = xN
2 ⊗ 1 + 1 ⊗ xN

2 ;

∆(xN
12) = xN

12 ⊗ 1 + 1 ⊗ xN
12 + (1 − q−1)Nq

N(N−1)
2

21 xN
1 ⊗ xN

2 .

As [ξ2, ξ12], [ξ1, ξ12] ∈ nq have degree Nα1 + 2Nα2, respectively 2Nα1 + Nα2, and
the components of these degrees of nq are trivial, we have

[ξ2, ξ12] = [ξ1, ξ12] = 0.

Again by degree considerations, there exists c ∈ k such that [ξ2, ξ1] = cξ12. By
the duality between Zq and Zq we have that

[ξ2, ξ1] = (1 − q−1)Nq
N(N−1)

2
21 ξ12.

Then there exists a morphism of algebras F : U (A+
2 ) → Zq given by

e1 7→ ξ1, e2 7→ ξ2.

This morphism takes a basis of A+
2 to a basis of nq, so Zq ≃ U (A+

2 ).

Row 2. Let q ∈ G
′
N, N ≥ 3. These diagrams correspond to braidings of super

type A with positive roots ∆+
q = {α1, α1 + α2, α2}.

The first diagram is ❡ ❡
q q−1 −1. In this case the unique Cartan root is α1 with

Nα1
= N. The element xN

1 ∈ B̃q is primitive and Zq is generated by ξ1. Hence
Zq ≃ U (A+

1 ).
The second diagram gives a similar situation, since Oq = {α1 + α2}.

Row 3. Let q ∈ G′
N, N ≥ 3. The diagram ❡ ❡

q q−2 q2

corresponds to a braiding of

Cartan type B2 with ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}. In this case Oq = ∆+

q . The

coproducts of the generators of B̃q are:

∆(x1) =x1 ⊗ 1 + 1 ⊗ x1; ∆(x2) = x2 ⊗ 1 + 1 ⊗ x2;

∆(x12) =x12 ⊗ 1 + 1 ⊗ x12 + (1 − q−2) x1 ⊗ x2;

∆(x112) =x112 ⊗ 1 + 1 ⊗ x112 + (1 − q−1)(1 − q−2) x2
1 ⊗ x2

+ q(1 − q−2) x1 ⊗ x12.

We have two different cases depending on the parity of N.
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1. If N is odd, then Nβ = N for all β ∈ ∆+
q . In this case,

∆(xN
1 ) =xN

1 ⊗ 1 + 1 ⊗ xN
1 ; ∆(xN

2 ) = xN
2 ⊗ 1 + 1 ⊗ xN

2 ;

∆(xN
12) =xN

12 ⊗ 1 + 1 ⊗ xN
12 + (1 − q−2)NxN

1 ⊗ xN
2 ;

∆(xN
112) =xN

112 ⊗ 1 + 1 ⊗ xN
112 + (1 − q−1)N(1 − q−2)Nx2N

1 ⊗ xN
2

+ C xN
1 ⊗ xN

12,

for some C ∈ k. Hence, in Zq we have the relations

[ξ1, ξ2] = (1 − q−2)Nξ12;

[ξ12, ξ1] = C ξ112;

[ξ1, ξ2]c = (1 − q−1)N(1 − q−2)Nξ112 + (1 − q−2)Nξ1ξ12;

[ξ1, ξ112] = [ξ2, ξ12] = 0.

Thus there exists an algebra map F : U (B+
2 ) → Zq given by e1 7→ ξ1, e2 7→ ξ2.

Moreover, F is an isomorphism, and so Zq ≃ U (B+
2 ). Using the relations of U (B+

2 )

we check that C = 2(1 − q−1)N(1 − q−2)N .

(2) If N = 2M > 2, then Nα1
= Nα1+α2 = N and N2α1+α2

= Nα2 = M. In this
case we have

∆(xN
1 ) =xN

1 ⊗ 1 + 1 ⊗ xN
1 ; ∆(xM

2 ) = xM
2 ⊗ 1 + 1 ⊗ xM

2 ;

∆(xN
12) =xN

12 ⊗ 1 + 1 ⊗ xN
12 + (1 − q−2)Nq

M(N−1)
21 xN

1 ⊗ x2M
2

+ (1 − q−2)MqM2

21 xM
112 ⊗ xM

2 ;

∆(xM
112) =xM

112 ⊗ 1 + 1 ⊗ xM
112 + (1 − q−1)M(1 − q−2)Mq

M(M−1)
21 xN

1 ⊗ xM
2 .

Hence, the following relations hold in Zq:

[ξ2, ξ1] = (1 − q−1)M(1 − q−2)Mq
M(M−1)
21 ξ112;

[ξ112, ξ2] = (1 − q−2)MqM2

21 ξ12;

[ξ1, ξ112] = [ξ2, ξ12] = 0.

Thus F : U (C+
2 ) → Zq, e1 7→ ξ1, e2 7→ ξ2, is an isomorphism of algebras. (Of

course C2 ≃ B2 but in higher rank we will get different root systems depending
on the parity of N).

Row 4. Let q ∈ G′
N, N 6= 2, 4. These diagrams correspond to braidings of super

type B with ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}.

If the diagram is ❡ ❡
q q−2 −1, then the Cartan roots are α1 and α1 + α2, with

Nα1
= N, Nα1+α2 = M; here, M = N if N is odd and M = N

2 if N is even.

The elements xN
1 , xM

12 ∈ B̃q are primitive in B̃q. Thus, in Zq, [ξ12, ξ1] = 0 and
Zq ≃ U ((A1 ⊕ A1)

+).

If we consider the diagram ❡ ❡
−q−1

q2 −1, then Oq = {α1, α1 + α2}, Nα1
= M

and Nα1+α2 = N. The elements xM
1 , xN

12 ∈ B̃q are primitive, so [ξ12, ξ1] = 0 and
Zq ≃ U ((A1 ⊕ A1)

+).



Lie algebras arising from Nichols algebras 27

Row 5. Let q ∈ G′
N, N 6= 3, ζ ∈ G′

3. The diagram ❡ ❡
ζ q−1 q corresponds to

a braiding of standard type B2, so ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}. The other

diagram ❢ ❢

ζ qζ−1 ζq−1

is obtained by changing the parameter q ↔ ζq−1.

The Cartan roots are 2α1 + α2 and α2, with N2α1+α2
= M := ord(ζq−1) and

Nα2 = N. The elements xM
112, xN

2 ∈ B̃q are primitive. Thus, in Zq, we have
[ξ112, ξ2] = 0. Hence, Zq ≃ U ((A1 ⊕ A1)

+).

Row 6. Let ζ ∈ G′
3. The diagrams ❡ ❡

ζ −ζ −1 and ❡ ❡
ζ−1

−ζ−1 −1 correspond to

braidings of standard type B, thus ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}. In both cases

Oq is empty so the corresponding Lie algebras are trivial.

Row 7. Let ζ ∈ G′
12. The diagrams of this row correspond to braidings of type

ufo(7). In all cases Oq = ∅ and the associated Lie algebras are trivial.

Row 8. Let ζ ∈ G′
12. The diagrams of this row correspond to braidings of type

ufo(8). For ❡ ❡
−ζ2

ζ −ζ2

, ∆+
q = {α1, 2α1 + α2, α1 + α2, α1 + 2α2, α2}. In this case

Oq = {α1 + α2}, Nα1+α2 = 12. Hence Zq ≃ U (A+
1 ). The same result holds for the

other braidings in this row.

Row 9. Let ζ ∈ G′
9. The diagrams of this row correspond to braidings of type

brj(2; 3). If q has diagram ❡ ❡
−ζ ζ7 ζ3

, then

∆+
q = {α1, 2α1 + α2, 3α1 + 2α2, α1 + α2, α1 + 2α2, α2}.

In this case Oq = {α1, α1 + α2} and Nα1
= Nα1+α2 = 18. Thus [ξ12, ξ1] = 0, so

Zq ≃ U ((A1 ⊕ A1)
+).

If q has diagram ❡ ❡
ζ3

ζ8 −1 , ❡ ❡
−ζ2

ζ −1 the set of positive roots are, respectively,

{α1, 2α1 + α2, 3α1 + 2α2, 4α1 + 3α2, α1 + α2, α2},

{α1, 4α1 + α2, 3α1 + α2, 2α1 + α2, α1 + α2, α2};

the Cartan roots are, respectively, α1 + α2, 2α1 + α2 and α1, 2α1 + α2. Hence, in
both cases, Zq ≃ U ((A1 ⊕ A1)

+).

Row 10. Let q ∈ G′
N, N ≥ 4. The diagram ❡ ❡

q q−3 q3

corresponds to a braiding of

Cartan type G2, so Oq = ∆+
q = {α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2, α2}. The

coproducts of the PBW-generators are:

∆(x1) = x1 ⊗ 1 + 1 ⊗ x1; ∆(x2) = x2 ⊗ 1 + 1 ⊗ x2;

∆(x12) = x12 ⊗ 1 + 1 ⊗ x12 + (1 − q−3) x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1 ⊗ x112 + (1 + q)(1 − q−2) x1 ⊗ x12

+ (1 − q−2)(1 − q−3) x2
1 ⊗ x2;

∆(x1112) = x1112 ⊗ 1 + 1 ⊗ x1112 + q2(1 − q−3) x1 ⊗ x112
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+ (q2 − 1)(1 − q−3) x2
1 ⊗ x12 + (1 − q−3)(1 − q−2)(1 − q−1) x3

1 ⊗ x2;

∆([x112, x12]c) = [x112, x12]c ⊗ 1 + 1 ⊗ [x112, x12]c + (q − q−1) x112 ⊗ x12

+ (1 − q−3)(1 + q)(1 − q−1 + q) x112x1 ⊗ x2

− qq21(1 − q−3)(1 + q − q2) x1112 ⊗ x2 + q2q21(1 − q−3) x1 ⊗ [x112, x2]c

+ (1 − q−3)2(q2 − 1) x2
1 ⊗ x2x12

+ q21(1 − q−3)2(1 − q−2)(1 − q−1) x3
1 ⊗ x2

2.

We have two cases.

1. If 3 does not divide N, then Nβ = N for all β ∈ ∆+
q . Thus, in B̃q,

∆(xN
1 ) = xN

1 ⊗ 1 + 1 ⊗ xN
1 ; ∆(xN

2 ) = xN
2 ⊗ 1 + 1 ⊗ xN

2 ;

∆(xN
12) = xN

12 ⊗ 1 + 1 ⊗ xN
12 + a1 xN

1 ⊗ xN
2 ;

∆(xN
112) = xN

112 ⊗ 1 + 1 ⊗ xN
112 + a2 xN

1 ⊗ xN
12 + a3 x2N

1 ⊗ xN
2 ;

∆(xN
1112) = xN

1112 ⊗ 1 + 1 ⊗ xN
1112 + a4 xN

1 ⊗ xN
112 + a5 x2N

1 ⊗ xN
12

+ a6 x3N
1 ⊗ xN

2 ;

∆([x112, x12]
N
c ) = [x112, x12]

N
c ⊗ 1 + 1 ⊗ [x112, x12]

N
c + a7 xN

112 ⊗ xN
12

+ a8 xN
1112 ⊗ xN

2 + a9 xN
1 ⊗ x2N

12 + a10 x2N
1 ⊗ xN

2 xN
12

+ a11 xN
112xN

1 ⊗ xN
2 + a12 x3N

1 ⊗ x2N
2 ;

for some ai ∈ k. Since

a1 = (1 − q−3)Nq
N(N−1)

2
21 6= 0,

a3 = (1 − q−2)N(1 − q−3)N 6= 0,

a6 = (1 − q−1)N(1 − q−2)N(1 − q−3)Nq
3N(N−1)

2
21 6= 0,

a12 = (1 − q−1)N(1 − q−2)N(1 − q−3)2N 6= 0,

the elements xN
12, xN

112, xN
1112 and [x112, x12]

N
c are not primitive. Hence Zq is gener-

ated by ξ1 and ξ2; also

[ξ2, ξ1] = a1 ξ12; [ξ12, ξ1] = a2 ξ112;

[ξ112, ξ1] = a4 ξ1112; [ξ1, ξ1112] = [ξ2, ξ12] = 0.

Thus, we have Zq ≃ U (G+
2 ).

(2) If N = 3M, then Nα1
= Nα1+α2 = N2α1+α2

= N and N3α1+α2
= N3α1+2α2

=
Nα2 = M. In this case we have

∆(xN
1 ) = xN

1 ⊗ 1 + 1 ⊗ xN
1 ; ∆(xM

2 ) = xM
2 ⊗ 1 + 1 ⊗ xM

2 ;

∆(xN
12) = xN

12 ⊗ 1 + 1 ⊗ xN
12 + b1 [x112, x12]

M
c ⊗ xM

2
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+ b2 xM
1112 ⊗ x2M

2 + (1 − q−3)Nq
N(N−1)

2
21 xN

1 ⊗ x3M
2 ;

∆(xN
112) = xN

112 ⊗ 1 + 1 ⊗ xN
112 + b3 xN

1 ⊗ xN
12 + b4 xM

1112 ⊗ [x112, x12]
M
c

+ (1 − q−2)N(1 − q−3)Nx2N
1 ⊗ x3M

2 + b5 x2M
1112 ⊗ xM

2

+ b6 xM
1112xN

1 ⊗ x2M
2 + b7 xN

1 ⊗ xM
2 [x112, x12]

M
c ;

∆(xM
1112) = xM

1112 ⊗ 1 + 1 ⊗ xM
1112 + b8 xN

1 ⊗ xM
2 ;

∆([x112, x12]
M
c ) = [x112, x12]

M
c ⊗ 1 + 1 ⊗ [x112, x12]

M
c

+ b9 xN
1 ⊗ x2M

2 + b10 xM
1112 ⊗ xM

2 ;

for some bi ∈ k. We compute some of them explicitly:

b8 = (1 − q−3)M(1 − q−2)M(1 − q−1)Mq
N(M−1)

2
21 ,

b9 = (1 − q−3)2M(1 − q−2)M(1 − q−1)MqM
21.

As these scalars are not zero, the elements xN
12, xN

112, xM
1112 and [x112, x12]

M
c are not

primitive. Thus Zq ≃ U (G+
2 ).

Row 11. Let ζ ∈ G
′
8. The diagrams of this row correspond to braidings of stan-

dard type G2, so ∆+
q = {α1, 3α1 + α2, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2}.

If q has diagram ❡ ❡
ζ2

ζ ζ−1

, then the Cartan roots are 2α1 + α2 and α2 with

N2α1+α2
= Nα2 = 8. The elements x8

112, x8
2 ∈ B̃q are primitive and [ξ2, ξ112] = 0 in

Zq. Hence Zq ≃ U ((A1 ⊕ A1)
+). An analogous result holds for the other diagrams

of the row.

Row 12. Let ζ ∈ G
′
24. This row corresponds to type ufo(9). If q has diagram

❡ ❡
ζ6

ζ11 ζ8

, then

∆+
q = {α1, 3α1 + α2, 2α1 + α2, 3α1 + 2α2, 4α1 + 3α2, α1 + α2, α1 + 2α2, α2}

and Oq = {α1 + α2, 3α1 + α2}. Here, Nα1+α2 = N3α1+α2
= 24, and x24

12, x24
1112 ∈ B̃q

are primitive. In Zq we have the relation [ξ12, ξ1112] = 0; thus Zq ≃ U ((A1 ⊕
A1)

+).

For the other diagrams, ❡ ❡
ζ6

ζ ζ−1

, ❡ ❡
ζ8

ζ5 −1 and ❡ ❡
ζ ζ19 −1 , the sets of

positive roots are, respectively,

{α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2, 5α1 + 2α2, 5α1 + 3α2, α2},

{α1, α1 + α2, 2α1 + α2, 3α1 + 2α2, 4α1 + 3α2, 5α1 + 3α2, 5α1 + 4α2, α2},

{α1, α1 + α2, 2α1 + α2, 3α1 + α2, 4α1 + α2, 5α1 + α2, 5α1 + 2α2, α2}.

The Cartan roots are, respectively, 2α1 + α2, α2; α1 + α2, 5α1 + 3α2; α1, 5α1 + 2α2.
Hence, in all cases, Zq ≃ U ((A1 ⊕ A1)

+).

Row 13. Let ζ ∈ G′
5. The braidings in this row are associated to the Lie super-

algebra brj(2; 5) [A5, §5.2]. If q has diagram ❡ ❡
ζ ζ2 −1 , then ∆+

q = {α1, 3α1 +
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α2, 2α1 + α2, 5α1 + 3α2, 3α1 + 2α2, 4α1 + 3α2, α1 + α2, α2}. In this case the Cartan
roots are α1, α1 + α2, 2α1 + α2 and 3α1 + α2, with Nα1

= N3α1+2α2
= 5 and

Nα1+α2 = N2α1+α2
= 10. In B̃q,

∆(x1) = x1 ⊗ 1 + 1 ⊗ x1;

∆(x12) = x12 ⊗ 1 + 1 ⊗ x12 + (1 − ζ2) x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1 ⊗ x112 + (1 + ζ)(1 − ζ3) x1 ⊗ x12

+ (1 − ζ2)(1 − ζ3) x2
1 ⊗ x2;

∆([x112, x12]c) = [x112, x12]c ⊗ 1 + 1 ⊗ [x112, x12]c

− ζ3(1 − ζ3)(1 + ζ)2 x1 ⊗ x2
12 − ζq21 x1x112 ⊗ x2

+ (1 + q21 + ζ3q21) x112x1 ⊗ x2 + ζ(1 − ζ2) x1x12x1 ⊗ x2

+ (1 − ζ2)(1 − ζ3)2 x2
1 ⊗ x2x12.

Hence the coproducts of x5
1, x10

12, x10
112, [x112, x12]

5
c ,∈ B̃q are:

∆(x5
1) = x5

1 ⊗ 1 + 1 ⊗ x5
1; ∆(x10

12) = x10
12 ⊗ 1 + 1 ⊗ x10

12;

∆(x10
112) = x10

112 ⊗ 1 + 1 ⊗ x10
112 + a1 x10

1 ⊗ x10
12 + a2 x5

1 ⊗ [x112, x12]
5
c ;

∆([x112, x12]
5
c) = [x112, x12]

5
c ⊗ 1 + 1 ⊗ [x112, x12]

5
c + a3 x5

1 ⊗ x10
12.

for some ai ∈ k. Thus, the following relations hold in Zq

[ξ12, ξ1] = a3 ξ112,12; [ξ112,12, ξ1] = a2 ξ112; [ξ1, ξ112,12] = [ξ12, ξ112] = 0.

Since

a1 =− (1 − ζ3)5(1 + ζ)5(1 + 62ζ − 15ζ2 − 87ζ3 + 70ζ4) 6= 0;

a3 =− (1 − ζ3)5(1 + ζ)8(4 − 8ζ − 19ζ2 − 3ζ3 − 50ζ4) 6= 0,

the elements x10
112, [x112, x12]

5
c are not primitive, so ξ1, ξ12 generate Zq. Hence, Zq ≃

U (B+
2 ).

If q has diagram ❡ ❡
−ζ3

ζ3 −1 , then

∆+
q = {α1, 4α1 + α2, 3α1 + α2, 5α1 + 2α2, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2},

Oq = {α1, 3α1 + α2, 2α1 + α2, α1 + α2},

with Nα1
= Nα1+α2 = 10, N3α1+α2

= Nα1+α2 = 5. In B̃q

∆(x1) = x1 ⊗ 1 + 1 ⊗ x1;

∆(x12) = x12 ⊗ 1 + 1 ⊗ x12 + (1 − ζ3) x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1 ⊗ x112 + (1 + ζ)(1 − ζ3) x1 ⊗ x12

+ (1 + ζ2)(1 − ζ3) x2
1 ⊗ x2;

∆(x1112) = x1112 ⊗ 1 + 1 ⊗ x1112 + (1 + ζ − ζ3)(1 − ζ4) x1 ⊗ x112

+ (1 + ζ)(1 + ζ − ζ3)(1 − ζ4) x2
1 ⊗ x12 + (1 + ζ)(1 − ζ3)(1 − ζ4) x3

1 ⊗ x2.
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Hence the coproducts of x10
1 , x5

12, x10
112, x5

1112,∈ B̃q are:

∆(x10
1 ) = x10

1 ⊗ 1 + 1 ⊗ x10
1 ; ∆(x5

12) = x5
12 ⊗ 1 + 1 ⊗ x5

12;

∆(x10
112) = x10

112 ⊗ 1 + 1 ⊗ x10
112 − (1 + ζ)5(1 − ζ3)5x5

1112 ⊗ x5
12

+ (1 + ζ)10(1 − ζ3)10 x10
1 ⊗ x10

12;

∆(x5
1112) = x5

1112 ⊗ 1 + 1 ⊗ x5
1112 + (1 + ζ)10(1 − ζ3)5x10

1 ⊗ x5
12.

Thus, the generators of Zq are ξ1 and ξ12 and they satisfy the following relations

[ξ12, ξ1] = (1 + ζ)10(1 − ζ3)5ξ1112,

[ξ1112, ξ12] = −(1 + ζ)5(1 − ζ3)5ξ112,

[ξ1, ξ1112] = [ξ12, ξ112] = 0.

Hence Zq ≃ U (C+
2 ).

Row 14. Let ζ ∈ G′
20. This row corresponds to type ufo(10). If q has diagram

❡ ❡
ζ ζ17 −1 , then ∆+

q = {α1, 3α1 + α2, 2α1 + α2, 5α1 + 3α2, 3α1 + 2α2, 4α1 + 3α2, α1 +
α2, α2}. The Cartan roots are α1 and 3α1 + 2α2 with Nα1

= N3α1+2α2
= 20. The

elements x20
1 , [x112, x12]

20
c ∈ B̃q are primitive; thus [ξ12, ξ112,12] = 0 in Zq and Zq ≃

U ((A1 ⊕ A1)
+). The same holds when the diagram of q is another one in this

row: Zq ≃ U ((A1 ⊕ A1)
+).

Row 15. Let ζ ∈ G′
15. This row corresponds to type ufo(11). If q has diagram

❡ ❡
−ζ −ζ12 ζ5

, then ∆+
q = {α1, 3α1 + α2, 5α1 + 2α2, 2α1 + α2, 3α1 + 2α2, α1 + α2, α1 +

2α2, α2}. The Cartan roots are α1 and 3α1 + 2α2 with Nα1
= N3α1+2α2

= 30. In Zq

we have [ξ12, ξ112,12] = 0, thus Zq ≃ U ((A1 ⊕ A1)
+). The same result holds if we

consider the other diagrams of this row.

Row 16. Let ζ ∈ G′
7. This row corresponds to type ufo(12). If q has diagram

❡ ❡
−ζ5

−ζ3 −1 , then

∆+
q = {α1, 5α1 + α2, 4α1 + α2, 7α1 + 2α2, 3α1 + α2, 8α1 + 3α2,

5α1 + 2α2, 7α1 + 3α2, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2}.

Also, Oq = {α1, 4α1 + α2, 3α1 + α2, 5α1 + 2α2, 2α1 + α2, α1 + α2} with Nβ = 14 for

all β ∈ Oq. In B̃q we have

∆(x1) = x1 ⊗ 1 + 1 ⊗ x1;

∆(x12) = x12 ⊗ 1 + 1 ⊗ x12 + (1 + ζ3) x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1 ⊗ x112 + (1 − ζ)(1 − ζ5) x1 ⊗ x12

+ (1 − ζ)(1 + ζ3) x2
1 ⊗ x2;

∆(x1112) = x1112 ⊗ 1 + 1 ⊗ x1112 + (1 + ζ3 − ζ5)(1 + ζ6) x1 ⊗ x112

+ ζ(ζ3 − 1) x2
1 ⊗ x12 + ζ6(1 − ζ2)(1 + ζ3) x3

1 ⊗ x2;
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∆(x11112) = x11112 ⊗ 1 + 1 ⊗ x11112 − ζ(1 − ζ)(1 − ζ2) x1 ⊗ x1112

+ (−2 + 2ζ2 − ζ4 + ζ5) x2
1 ⊗ x112 − (1 − ζ)(1 − ζ2)2 x3

1 ⊗ x12

+ ζ2(1 − ζ)(1 − ζ2) x4
1 ⊗ x2;

∆([x1112, x112]c) = [x1112, x112]c ⊗ 1 + 1 ⊗ [x1112, x112]c

−
(1 − ζ5)

(1 + ζ)
(1 − ζ3 + 2ζ4) x1 ⊗ x2

112

− q21(1 − ζ)(1 − ζ3) x2
1 ⊗ [x112, x12]c

− (1 − ζ)2(4 + 4ζ + ζ2 − 2ζ3 − 3ζ4) x2
1 ⊗ x12x112

+ q21(1 − ζ2)2ζ4(1 − 2ζ − 3ζ4 − 2ζ5 + ζ6) x3
1 ⊗ x2

12

+ (1 − ζ)2(1 + ζ3)2(1 + ζ6) x3
1 ⊗ x2x112

− ζ(1 − ζ)(1 − ζ2) x1112 ⊗ x112

− q21ζ6(1 − ζ)2(1 − ζ2)(1 + 2ζ) x4
1 ⊗ x2x12

+ q2
21ζ2(1 − ζ)2(1 − ζ2)(1 + ζ3) x5

1 ⊗ x2
2

− q2
12(1 + ζ3)(1 − ζ)(1 − ζ4 + ζ6) x111112 ⊗ x2

+ ζq21(1 + ζ3)(1 − ζ)(1 − ζ2)(1 + ζ − ζ2) x11112x1 ⊗ x2

− ζ(1 − ζ)2(1 + ζ3)(1 − ζ − 2ζ2 − ζ3) x1112x2
1 ⊗ x2

+ (1 − ζ)(1 + ζ2 + ζ3 − ζ4 − ζ5) x1112x1 ⊗ x12

+ ζq21(1 − ζ)2(2 + ζ − ζ3) x11112 ⊗ x12.

Hence

∆(x14
1 ) = x14

1 ⊗ 1 + 1 ⊗ x14
1 ; ∆(x14

12) = x14
12 ⊗ 1 + 1 ⊗ x14

12;

∆(x14
112) = x14

112 ⊗ 1 + 1 ⊗ x14
112 + a1 x14

1 ⊗ x14
12;

∆(x14
1112) = x14

1112 ⊗ 1 + 1 ⊗ x14
1112 + a2 x14

1 ⊗ x14
112 + a3 x28

1 ⊗ x14
12;

∆(x14
11112) = x14

11112 ⊗ 1 + 1 ⊗ x14
11112 + a4 x14

1 ⊗ x14
1112

+ a5 x28
1 ⊗ x14

112 + a6 x42
1 ⊗ x14

12;

∆([x1112, x112]
14
c ) = [x1112, x112]

14
c ⊗ 1 + 1 ⊗ [x1112, x112]

14
c + a7 x14

1112 ⊗ x14
12

+ a8 x14
11112 ⊗ x14

12 + a9 x42
1 ⊗ x28

12 + a10 x14
1 ⊗ x28

112

+ a11 x28
1 ⊗ x14

12x14
112 + a12 x14

1112x14
1 ⊗ x14

12;

with ai ∈ k. For instance,

a1 = q7
21(−2352ζ5 + 2548ζ4 + 2548ζ3 − 2352ζ2 + 4067) 6= 0,

because ζ ∈ G
′
7. Also,

a3 = 5860813ζ5 + 974589ζ4 − 3164658ζ3 + 3609109ζ2

+ 5243917ζ − 1667869 6= 0;

a6 = q7
21(10074385052942ζ5 + 31910289509889ζ4 + 12118010152752ζ3

− 909500144560ζ2 + 24680570802531ζ + 26319432020966) 6= 0;
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a9 = 5736482678185949424ζ5 + 10808606486393112796ζ4

+ 2814368183725984844ζ3 + 1300044629337708464ζ2

+ 9968706251262033856ζ + 7625687982247823061 6= 0.

Then x14
112, x14

1112, x14
11112 and [x1112, x112]

14
c are not primitive elements in B̃q. Thus,

ξ1 and ξ12 generates Zq.
Also, in Zq we have

[ξ12, ξ1] = a1 ξ112; [ξ1, ξ112] = a2 ξ1112;

[ξ1, ξ1112] = a4 ξ11112; [ξ1, ξ11112] = [ξ12, ξ112] = 0.

So, Zq ≃ U (G+
2 ).

In the case of the diagram ❡ ❡
−ζ −ζ4 −1 Zq is generated by ξ1, ξ12 and

[ξ12, ξ1] = b1 ξ112; [ξ12, ξ112] = b2 ξ112,12;

[ξ12, ξ112,12] = b3 ξ(112,12),12 ; [ξ1, ξ112] = [ξ12, ξ(112,12),12] = 0,

where b1, b2, b3 ∈ k×. Hence, we also have Zq ≃ U (G+
2 ).

Remark 4.1. The results of this paper are part of the thesis of one of the authors
[RB], where missing details of the computations can be found.

References

[A] N. Andruskiewitsch, Notes on extensions of Hopf algebras. Canad. J. Math.
48 (1996), 3–42.

[AA] Andruskiewitsch, N; Angiono, I., Generalized root systems, contragredient
Lie superalgebras and Nichols algebras, in preparation.

[AAR] Andruskiewitsch, N., Angiono, I., Rossi Bertone, F. The divided powers al-
gebra of a finite-dimensional Nichols algebra of diagonal type, Math. Res. Lett.,
to appear.

[AAY] N. Andruskiewitsch, I. Angiono, H. Yamane. On pointed Hopf superalge-
bras, Contemp. Math. 544 (2011), 123–140.

[AN] N. Andruskiewitsch, S. Natale. Braided Hopf algebras arising from matched
pairs of groups, J. Pure Appl. Alg. 182 (2003), 119–149.

[AS] N. Andruskiewitsch, H.-J. Schneider. Pointed Hopf algebras, New direc-
tions in Hopf algebras, MSRI series, Cambridge Univ. Press; 1–68 (2002).

[A1] I. Angiono. On Nichols algebras with standard braiding. Algebra and Num-
ber Theory, Vol. 3 (2009), 35–106.

[A2] I. Angiono. A presentation by generators and relations of Nichols algebras of
diagonal type and convex orders on root systems. J. Eur. Math. Soc. 17 (2015),
2643–2671.



34 N. Andruskiewitsch – I. Angiono – F. Rossi Bertone

[A3] On Nichols algebras of diagonal type. J. Reine Angew. Math. 683
(2013), 189–251.

[A4] Nichols algebras of unidentified diagonal type, Comm. Alg 41
(2013), 4667–4693.

[A5] Distinguished pre-Nichols algebras, Transform. Groups 21
(2016), 1–33.

[AY] I. Angiono, H. Yamane. The R-matrix of quantum doubles of Nichols algebras
of diagonal type. J. Math. Phys. 56, 021702 (2015) 1-19.

[BD] Y. Bespalov, B. Drabant. Cross Product Bialgebras Part II, J. Algebra 240
(2001), 445–504.

[CH] M. Cuntz, I. Heckenberger. Weyl groupoids with at most three objects. J. Pure
Appl. Algebra 213 (2009), 1112–1128.

[GG] J. Guccione, J. Guccione. Theory of braided Hopf crossed products, J. Algebra
261 (2003), 54–101.

[H1] I. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type.
Invent. Math. 164 (2006), 175–188.

[H2] Classification of arithmetic root systems. Adv. Math. 220 (2009),
59-124.

[H3] Lusztig isomorphisms for Drinfel’d doubles of bosonizations of
Nichols algebras of diagonal type. J. Alg. 323 (2010), 2130–2180.

[K] V. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem.
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Medina Allende s/n, Ciudad Universitaria,
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