Open Access
Translator Disclaimer
october 2014 Spinors and isometric immersions of surfaces in 4-dimensional products
Julien Roth
Bull. Belg. Math. Soc. Simon Stevin 21(4): 635-652 (october 2014). DOI: 10.36045/bbms/1414091007

Abstract

We prove a spinorial characterization of surfaces isometrically immersed into the $4$-dimensional product spaces $\mathbb{M}^3(c)\times{\mathbb R}$ and $\mathbb{M}^2(c)\times{\mathbb R}^2$, where $\mathbb{M}^n(c)$ is the $n$-dimensional real space form of curvature $c$.

Citation

Download Citation

Julien Roth. "Spinors and isometric immersions of surfaces in 4-dimensional products." Bull. Belg. Math. Soc. Simon Stevin 21 (4) 635 - 652, october 2014. https://doi.org/10.36045/bbms/1414091007

Information

Published: october 2014
First available in Project Euclid: 23 October 2014

zbMATH: 1310.53054
MathSciNet: MR3271325
Digital Object Identifier: 10.36045/bbms/1414091007

Subjects:
Primary: 53C27 , 53C42

Keywords: Dirac operator , isometric immersions , surfaces

Rights: Copyright © 2014 The Belgian Mathematical Society

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.21 • No. 4 • october 2014
Back to Top