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Abstract

We prove a spinorial characterization of surfaces isometrically immersed
into the 4-dimensional product spaces M3(c) × R and M2(c) × R2, where
Mn(c) is the n-dimensional real space form of curvature c.

1 Introduction

In [4], Friedrich gave a spinorial characterization of surfaces in the Euclidean
3-space. Namely, he proved that the existence of a so-called generalized Killing
spinor ψ on a surface (M2, g), that is

∇Xψ = A(X) · ψ,

where A is a symmetric (1, 1)-tensor, is equivalent to the Gauss and Codazzi
equations and therefore to an isometric immersion of (M2, g) into R

3 with −2A
as shape operator. Later on, Morel generalized in [9] this result for surfaces
of the sphere S3 and the hyperbolic space H3 and we give in [12] an analogue
for 3-dimensional homogeneous manifolds with 4-dimensional isometry group,
as well as for surfaces into pseudo-Riemannian space forms [6] and Lorentzian
products [13]. In a more recent work [2], we studied with Bayard and Lawn the
spinorial characterization of surfaces into 4-dimensional space forms.
In this paper, we extend this spinorial characterization for surfaces in the prod-
uct spaces M3(c) × R and M2(c) × R2, where Mn(c) is the complete simply
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connected n-dimensional real space form of constant sectional curvature c 6= 0.
First we characterize immersions of surfaces into these product spaces by the ex-
istence of special spinor fields satisfying an appropriate generalized Killing-type
equation, that is an equation involving the spinorial connection (see Theorem 3.1).
Then, we show that this equation is equivalent to the corresponding Dirac equa-
tion with an additional condition on the norm of the spinor field (see Proposition
4.1 and Corollary 4.2).

2 Preliminaries

In this section of preliminaries, we will first recall some basics about surfaces
into the product spaces M2(c)× R2 and M3(c)× R. In particular, we will recall
the compatibility equations assuring that a surface is isometrically immersed into
one of these spaces. Then, we will give some facts about restrictions of spinors on
a surface into a 4-dimensional space and deduce the particular spinor fields with
which we will work in the sequel.

2.1 Compatibilty equations

Let (M2, g) be a Riemannian surface isometrically immersed into the product
space P = M2(c) × R2 or M3(c) × R, endowed with the product metric g̃. For
more convinience, we will denote in the sequel all the metrics and also hermitian
products on spinor bundles by the same classical notation 〈·, ·〉 (no confusion is
possible). We denote by F the product structure of P. The map F : TP −→ TP is
defined by F(X1 +X2) = X1 −X2, where X1 belongs to the first factor

(
TM2(c) or

TM3(c)
)

and X2 belongs to the second factor
(
TR2 or TR

)
. Obviously, F satisfies

F2 = Id (and F 6= Id), (1)

g̃(FX, Y) = g̃(X, FY), (2)

∇̃F = 0. (3)

Moreover, we recall that the curvature of (P, g̃) is given by

R̃(X, Y)Z =
c

4

[
〈Y, Z〉 X − 〈X, Z〉Y + 〈FY, Z〉 FX − 〈FX, Z〉 FY

+ 〈Y, Z〉 FX − 〈X, Z〉 FY + 〈Y, FZ〉 X − 〈X, FZ〉 Y

]
(4)

This product structure F induces the existence of the following four operators

f : TM −→ TM, h : TM −→ NM, s : NM −→ TM and t : NM −→ NM

defined for any X ∈ TM and ξ ∈ NM by

FX = f X + hX and Fξ = sξ + tξ. (5)
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From Equations (1) and (2), f and t are symmetric and we have the following
relations between these four operators

f 2X = X − shX, (6)

t2ξ = ξ − hsξ, (7)

f sξ + stξ = 0, (8)

h f X + thX = 0, (9)

g̃(hX, ξ) = g̃(X, sξ), (10)

for any X ∈ Γ(TM) and ξ ∈ Γ(NM). Moreover, from Equation (3), we have

(∇X f )Y = AhYX + s(B(X, Y)), (11)

∇⊥
X(hY)− h(∇XY) = t(B(X, Y)) − B(X, f Y), (12)

∇⊥(tξ) − t(∇⊥
X ξ) = −B(sξ, X) − h(Aξ X), (13)

∇X(sξ) − s(∇⊥
X ξ) = − f (Aξ X) + Atξ X, (14)

where B : TM × TM −→ NM is the second fundamental form and for any
ξ ∈ TM, Aξ is the Weingarten operator associated with ξ and defined by
g̃(Aξ X, Y) = g̃(B(X, Y), ξ) for any vectors X, Y tangent to M.
Finally, from (4), we deduce that the Gauss, Codazzi and Ricci equations are re-
spectively given by

R(X, Y)Z =
c

4

[
〈Y, Z〉 X − 〈X, Z〉Y + 〈 f Y, Z〉 f X − 〈 f X, Z〉 f Y

〈Y, Z〉 f X − 〈X, Z〉 f Y + 〈Y, f Z〉 X − 〈X, f Z〉 Y

]

+AB(Y,Z)X − AB(X,Z)Y, (15)

(∇X B)(Y, Z) − (∇YB)(X, Z) =
c

4

[
〈 f Y, Z〉 hX − 〈 f X, Z〉 hY

+ 〈Y, Z〉 hX − 〈X, Z〉 hY

]
, (16)

R⊥(X, Y)ξ =
c

4

[
〈hY, ξ〉 hX − 〈hX, ξ〉 hY

]
+ B(AξY, X)− B(Aξ X, Y). (17)

Conversely, let (M2, g) a Riemannian surface endowed with a rank 2 vector bun-
dle E endowed with a metric and a compatible connection∇⊥. Assume that there
exist some tensors f , h, s, t and B satisfying Equations (6)-(13) (note that (14) is
not required since it is the dual equation of (12)) and the Gauss-Codazzi-Ricci
equations (15)-(17). Moreover we define the operator F : TM ⊕ E −→ TM ⊕ E
by relations (5). If in addition the operator F satisfy that the ranks of the maps
F+Id

2 and F−Id
2 are 2 and 2 (resp. 3 and 1), then Kowalczyk [5] and De Lira-Tojeiro-

Vitório [8] proved independently that there exists a local isometric immersion
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from (M, g) into M
2(c) × R

2 (resp. M
3(c) × R) with E as normal bundle, B as

second fundamental form and such that the product structure of M2(c) × R2

(resp. M3(c) × R) coincide with F over M. This immersion becomes global if
M is simply connected. Note that this was previously proven in a more abstract
way by Piccione and Tausk [11].

2.2 Spinors on surfaces of P

For details about the recalls of this section, the reader can refer to [1] for instance.
Let (M2, g) be an oriented Riemannian surface, with a given spin structure, and
E an oriented and spin vector bundle of rank 2 on M. We consider the spinor
bundle Σ over M twisted by E and defined by

Σ = ΣM ⊗ ΣE,

where ΣM and ΣE are the spinor bundles of M and E respectively. We endow Σ

with the spinorial connection ∇ defined by

∇ = ∇ΣM ⊗ IdΣE + IdΣM ⊗∇ΣE.

We also define the Clifford product · by






X · ϕ = (X ·M α)⊗ σ if X ∈ Γ(TM)

X · ϕ = α ⊗ (X ·
E

σ) if X ∈ Γ(E)

for all ϕ = α⊗σ ∈ ΣM⊗ΣE, where ·
M

and ·
E

denote the Clifford products on ΣM
and on ΣE respectively and where σ = σ+ − σ− for the natural decomposition of
ΣE = Σ+E ⊕ Σ−E. Here, Σ+E and Σ−E are the eigensubbundles (for the eigen-
value 1 and −1) of ΣE for the action of the normal volume element ω⊥ = iξ1 ·E ξ2,
where {ξ1, ξ2} is a local orthonormal frame of E. Note that Σ+M and Σ− are
defined similarly by for the tangent volume element ω = ie1 ·M e2. We finally
define the twisted Dirac operator D on Γ(Σ) by

Dϕ = e1 · ∇e1
ϕ + e2 · ∇e2 ϕ,

where {e1, e2} is an orthonormal basis of TM.

We note that Σ is also naturally equipped with a hermitian scalar product 〈., .〉
which is compatible with the connection ∇, since so are ΣM and ΣE, and thus
also with a compatible real scalar product Re〈., .〉. We also note that the Clifford
product · of vectors belonging to TM⊕ E is antihermitian with respect to this her-
mitian product. Finally, we stress that the four subbundles Σ±± := Σ±M ⊗ Σ±E
are orthogonal with respect to the hermitian product. We will also consider
Σ+ = Σ++ ⊕ Σ−− and Σ− = Σ+− ⊕ Σ−+.Throughout the paper we will assume
that the hermitian product is C−linear w.r.t. the first entry, and C−antilinear
w.r.t. the second entry.
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Now, let (P, g̃) be a 4-dimensional spin manifold. It is a well-known fact that
there is an identification between the spinor bundle ΣP|M of P over M, and the
spinor bundle of M twisted by the normal bundle Σ := ΣM ⊗ ΣE. Moreover, we
have the spinorial Gauss formula: for any ϕ ∈ Γ(Σ) and any X ∈ TM,

∇̃X ϕ = ∇X ϕ +
1

2 ∑
j=1,2

ej · B(X, ej) · ϕ (18)

where ∇̃ is the spinorial connection of ΣP and ∇ is the spinoral connection of Σ

defined as above and {e1, e2} is a local orthonormal frame of TM. We will also
use this notation and {ξ1, ξ2} for a local orthonormal frame of E. Here · is the
Clifford product on P.
From now on, we will take P = M

2(c) × R
2 or M

3(c) × R. By restriction of a
parallel spinor of the Euclidean space R5 if c > 0 or the Lorentzian space R4,1 if
c < 0, we obtain on P a spinor field ϕ satisfying

{
∇̃X ϕ = αX · ϕ if X ∈ Γ(TM2(c)) or Γ(TM3(c)),

∇̃X ϕ = 0 if X ∈ Γ(TR2) or Γ(TR),

with α ∈ C so that 4α2 = c. In other words, for any X ∈ Γ(TP), we have

∇̃X ϕ =
α

2
(X + FX) · ϕ.

Hence, by the spinorial Gauss formula (18), the restriction of ϕ on M satisfies

∇X ϕ =
α

2
(X + f X + hX) · ϕ + ζ(X) · ϕ, (19)

where ζ(X) = −
1

2

2

∑
j=1

ej · B(ej, X).

3 Main result

Now, we have the ingredients to state the the main result of this note.

Theorem 3.1. Let c ∈ R, c 6= 0 and α ∈ C such that 4α2 = c. Let (M2, g) be an
oriented Riemannian surface and E an oriented and spin vector bundle of rank 2 over M
with scalar product 〈·, ·〉E and compatible connection ∇E. We denote by Σ = ΣM ⊗ ΣE
the twisted spinor bundle. Let B : TM × TM −→ E a bilinear symmetric map and

f : TM −→ TM, h : TM −→ E, s : E −→ TM and t : E −→ E

satisfying Equations (6)-(13). Moreover we assume that the rank of the maps F+Id
2 and

F−Id
2 is 2 and 2 (resp. 3 and 1), where F : TM ⊕ E −→ TM ⊕ E is defined from f , h, s

and t by relations (5). Then, the two following statements are equivalent

1. There exists a local isometric immersion of (M2, g) into P = M
2(c)× R

2 (resp.
M3(c) × R) with E as normal bundle and second fundamental form B such that
over M the product structure is given by f , h, t and s.
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2. There exists a spinor field ϕ in Σ satisfying for all X ∈ X(M)

∇X ϕ =
α

2
(X + f X + hX) · ϕ + ζ(X) · ϕ,

such that ϕ+ and ϕ− vanish nowhere.

Remark 3.2. The case c = 0, that is, for isometric immersions in R
4, has been treated

in [2]. In that case, the operators f , h, s, t are not considered since we do not need the
product structure of R4 = R2 × R2.

Proof: First, we remark that the fact that (1) implies (2) has been proved in
the discussion of Section 2. The work consists in proving that (2) implies (1).
The computations are in the same spirit as in [2], with some technical difficulties
due to the terms arising from the product structure. We will emphasize on these
differences. We have to compute the spinorial curvature of the particular spinor
ϕ. For this, let us compute R(e1, e2)ϕ, where (e1, e2) is a local orthonormal frame
of TM. We also denote by (e3, e4) a local orthonormal frame of E. Then, we have

R(e1, e2)ϕ = d∇ζ(e1, e2) · ϕ + (ζ(e2) · ζ(e1)− ζ(e1)ζ(e2)) · ϕ

−
α

2

(
∇e2e1 +∇e2( f e1) +∇⊥

e2
(he1)

)
· ϕ

+
α

2

(
∇e1

e2 +∇e1
( f e2) +∇⊥

e1
(he2)

)
· ϕ

+
α2

4
(e2 + f e2 + he2) · (e1 + f e1 + he1) · ϕ

−
α2

4
(e1 + f e1 + he1) · (e2 + f e2 + he2) · ϕ,

+
α

2

(
ζ(e1) · (e2 + f e2 + he2)− (e2 + f e2 + he2) · ζ(e1)

)
· ϕ

−
α

2

(
ζ(e2) · (e1 + f e1 + he1)− (e1 + f e1 + he1) · ζ(e2)

)
· ϕ

−
α

2
([e1, e2] + f [e1, e2] + h[e1, e2]) · ϕ

where we denote d∇ζ(X, Y) = ∇X(ζ(Y)) − ∇Y(ζ(X)) − ζ([X, Y]). First, by a
straightforward computation, we see that the term

+
α

2

(
ζ(e1) · (e2 + f e2 + he2)− (e2 + f e2 + he2) · ζ(e1)

)
· ϕ

−
α

2

(
ζ(e2) · (e1 + f e1 + he1)− (e1 + f e1 + he1) · ζ(e2)

)
· ϕ

vanishes. Moreover, by Equations (11) and (12) and the fact that the Levi-civita is
torsion-free, the term

α

2

(
∇e1

e2 +∇e1
( f e2) +∇⊥

e1
(he2)

)
· ϕ −

α

2

(
∇e2e1 +∇e2( f e1) +∇⊥

e2
(he1)

)
· ϕ

−
α

2
([e1, e2] + f [e1, e2] + h[e1, e2]) · ϕ
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also vanishes. Hence, we get

R(e1, e2)ϕ = d∇ζ(e1, e2) · ϕ + (ζ(e2) · ζ(e1)− ζ(e1)ζ(e2)) · ϕ

+
α2

2

(
〈 f e1, e2〉

2 − 〈 f e1, e1〉 〈 f e2, e2〉
)

e1 · e2 · ϕ

+
α2

2

(
〈he2, e3〉 〈 f e1, e4〉 − 〈he1, e3〉 〈he2, e4〉

)
e3 · e4 · ϕ

+
α2

2

(
f e2 · he1 − f e1 · he2 − e2 · he1 + e1 · he2

)
· ϕ

But, as computed in [2] (Lemma 3.3) , we have

R(e1, e2)ϕ = −
1

2
Ke1 · e2 · ϕ −

1

2
KNe3 · e4 · ϕ, (20)

d∇ζ(X, Y) = −
1

2

2

∑
j=1

ej ·
(
(∇XB)(Y, ej)− (∇YB)(X, ej)

)
, (21)

where ∇ stands for the natural connection on T∗M ⊗ T∗M ⊗ E, and

ζ(e2) · ζ(e1)− ζ(e1) · ζ(e2) =
1

2

(
|B(e1, e2)|

2 − 〈B(e1, e1), B(e2, e2)〉
)
e1 · e2

+
1

2
〈(Ae3 ◦ Ae4

− Ae4
◦ Ae3) (e1), e2〉 e3 · e4. (22)

Therefore, we have

G · ϕ + R · ϕ + C · ϕ = 0,

where G, R and C are the 2-forms defined by

G =

[
K + 〈B(e1, e1), B(e2, e2)〉 − |B(e1, e2)|

+α2
(

1 − 〈 f e1, e2〉
2 + 〈 f e1, e1〉 〈 f e2, e2〉

) ]
e1 · e2,

where K is the Gauss curvature of (M, g),

R =

[
KE + 〈(Ae3 ◦ Ae4

− Ae4
◦ Ae3) (e1), e2〉

+α2 (〈he1, e3〉 〈he2, e4〉 − 〈he1, e4〉 〈 f e2, e3〉)

]
e3 · e4,

where KE = 〈RE(e1, e2)e3, e4〉 is the curvature of the bundle E, and

C = 2d∇ζ(e1, e2) + α2 ( f e2 · he1 − f e1 · he2 + e2 · he1 − e1 · he2) .

As proved in [2] (Lemma 3.4), if T is a 2-form such that T · ϕ = 0 with ϕ+ and
ϕ− nowhere vanishing, then T = 0. Moreover, since G belongs to Λ2M ⊗ 1, R
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belongs to 1 ⊗ Λ2E and C is of mixed type, that is, belongs to TM ⊗ E, then each
of these three parts are zero. But G = 0 is nothing else but

K + 〈B(e1, e1), B(e2, e2)〉 − |B(e1, e2)| = −
c

4

(
1 − 〈 f e1, e2〉

2 + 〈 f e1, e1〉 〈 f e2, e2〉
)

,

that is the Gauss equation. Similarly, R = 0 is equivalent to

KE + 〈(Ae3 ◦ Ae4
− Ae4

◦ Ae3) (e1), e2〉 = −
c

4
(〈he1, e3〉 〈he2, e4〉 − 〈he1, e4〉 〈 f e2, e3〉) ,

that is the Ricci equation. Finally C = 0, gives the Codazzi equations. Indeed,
since

d∇ζ(X, Y) = −
1

2

2

∑
j=1

ej ·
(
(∇XB)(Y, ej)− (∇YB)(X, ej)

)
.

Thus, from C = 0, we deduce for j = 1, 2

(∇e1
B)(e2, ej)− (∇e2 B)(e1, ej) =

c

4

[ 〈
f e2, ej

〉
he1 −

〈
f e1, ej

〉
he2

+
〈
e2, ej

〉
he1 −

〈
e1, ej

〉
he2

]
, (23)

which are the Codazzi equations. Since in addition, we have assumed Equations
(6)-(12), by the theorem of Kowalczyk and De Lira-Tojeiro-Vitório, we get that
(M2, g) is isometrically immersed into P with B as second fundamental form and
f , h, s and t coming from the product structure F of P. This concludes the proof.

Remark 3.3. Note that in the proof, we only use Equations (11) and (12) in the compu-
tations. The other Equations (6)-(10) and (11)-(13) are only needed to apply the theorem
of Kowalczyk and De Lira-Tojeiro-Vitóri, as well as the hypothesis on the rank of the maps
F+Id

2 and F−Id
2 .

4 The Dirac equation

Let ϕ be a spinor field satisfying Equation (19), then it satisfies the following Dirac
equation

Dϕ = ~H · ϕ −
α

2

[
(2 + tr( f ))ϕ − β · ϕ

]
, (24)

where β is the 2-form defined by β = ∑
i=1,2

ei · hei =
2

∑
i,j=1

hijei · ξ j, where

hi,j = 〈hei , ξ j〉.
As in [2], we will show that this equation with an appropiate condition on the
norm of both ϕ+ and ϕ− is equivalent to Equation (19), where the tensor B is

expressed in terms of the spinor field ϕ and such that tr(B) = 2~H. Moreover, from
Equation (19) we deduce the following conditions on the derivatives of |ϕ+|2 and
|ϕ−|2. Indeed, after decomposition onto Σ+ and Σ−, (19) becomes

∇X ϕ± =
α

2
(X + f X + hX) · ϕ∓ + η(X) · ϕ±.
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From this we deduce that

X(|ϕ±|2) = Re
〈

α(X + f X + hX) · ϕ∓, ϕ±
〉

(25)

Now, let ϕ a spinor field solution of the Dirac equation (24) with ϕ+ and ϕ−

nowhere vanishing and satisying the norm condition (25), we set for any vector
fields X and Y tangent to M and ξ ∈ E

〈
B+(X, Y), ξ

〉
=

1

2|ϕ+|2

[
α

2

〈
(X · f Y + Y · f X) · ϕ−

+(X · hY + Y · hX) · ϕ−, ξ · ϕ+
〉

+
〈

X · ∇Y ϕ+ + α < X, Y > ϕ−, ξ · ϕ+
〉
]

, (26)

and

〈
B−(X, Y), ξ

〉
=

1

2|ϕ−|2

[
α

2

〈
(X · f Y + Y · f X) · ϕ+

+(X · hY + Y · hX) · ϕ+, ξ · ϕ−
〉

+
〈

X · ∇Y ϕ− + α < X, Y > ϕ+, ξ · ϕ−
〉
]

. (27)

Finally, we set B = B+ + B−. Then, we have the following

Proposition 4.1. Let ϕ ∈ Γ(Σ) satisfying the Dirac equation (24)

Dϕ = ~H · ϕ −
α

2

[
(2 + tr( f ))ϕ − β · ϕ

]

such that
X(|ϕ±|2) = Re

〈
α(X + f X + hX) · ϕ∓, ϕ±

〉

then ϕ is solution of Equation (19)

∇X ϕ =
α

2
(X + f X + hX) · ϕ + ζ(X) · ϕ,

where ζ is defined by ζ(X) = −
1

2

2

∑
j=1

ej · B(ej, X).

For the sake of clarity, the proof of this proposition will be given in the next
section. Now, combining this proposition with Theorem 3.1, we get the following
corollary.
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Corollary 4.2. Let c ∈ R, c 6= 0 and α ∈ C such that 4α2 = c. Let (M2, g) be
an oriented Riemannian surface and E an oriented and spin vector bundle of rank 2
over M with scalar product < ·, · >E and compatible connection ∇E. We denote by
Σ = ΣM ⊗ ΣE the twisted spinor bundle. Let f , h, s and s be some maps

f : TM −→ TM, h : TM −→ E, s : E −→ TM and t : E −→ E

satisfying Equations (6)-(10). Moreover we assume that the rank of the maps F+Id
2 and

F−Id
2 are 2 and 2 (resp. 3 and 1), where F : TM ⊕ E −→ TM ⊕ E is defined by relations

(5). Then, the two following statements are equivalent

1. There exists an isometric immersion of (M2, g) into M
2(c)× R

2 (resp. M
3(c)×

R) with E as normal bundle and mean curvature ~H such that over M the product
strcuture is given by f , h, t and s.

2. There exists a spinor field ϕ in Σ solution of the Dirac equation

Dϕ = ~H · ϕ −
α

2

[
(2 + tr( f ))ϕ − β · ϕ

]

such that ϕ+ and ϕ− never vanish, satisfy the norm condition (25) and such
that the maps f , h, s, t and the tensor B defined by (26) and (27) satisfy relations
(11)-(13).

5 Proof of Proposition 4.1

First, we decompose the Dirac equation (24) on the four spinor subbundles Σ++,
Σ−−, Σ+− and Σ−+. We get the following four equations





Dϕ−− = ~H · ϕ++ − α
2

(
2 + tr( f )

)
ϕ+− + α

2 β · ϕ−+,

Dϕ++ = ~H · ϕ−− − α
2

(
2 + tr( f )

)
ϕ−+ + α

2 β · ϕ+−,

Dϕ+− = ~H · ϕ−+ − α
2

(
2 + tr( f )

)
ϕ−− + α

2 β · ϕ++,

Dϕ−+ = ~H · ϕ+− − α
2

(
2 + tr( f )

)
ϕ++ + α

2 β · ϕ−−.

Now, we fix a point p ∈ M, and consider e3 a unit vector in Ep so that the mean

curvature vector is given by ~H = |~H|e3 at p. We complete e3 by e4 to get a pos-
itively oriented and orthonormal frame of Ep. First, we assume that ϕ−−, ϕ++,
ϕ+− and ϕ−+ do not vanish at p. It is easy to see that

{
e1 · e3 ·

ϕ−−

|ϕ−−|
, e2 · e3 ·

ϕ−−

|ϕ−−|

}

is an orthonormal frame of Σ++ for the real scalar product Re 〈·, ·〉. Indeed, we
have

Re
〈

e1 · e3 · ϕ−−, e2 · e3 · ϕ−−
〉

= Re
〈

ϕ−−, e3 · e1 · e2 · e3 · ϕ−−
〉

= Re
(

i|ϕ−−|2
)
= 0.



Spinors and isometric immersions of surfaces in 4-dimensional products 645

Of course, by the same argument,
{

e1 · e3 ·
ϕ++

|ϕ++|
, e2 · e3 ·

ϕ++

|ϕ++|

}
,

{
e1 · e3 ·

ϕ−+

|ϕ−+|
, e2 · e3 ·

ϕ−+

|ϕ−+|

}
,

{
e1 · e3 ·

ϕ+−

|ϕ+−|
, e2 · e3 ·

ϕ+−

|ϕ+−|

}

are orthonormal frames of Σ−−, Σ+− and Σ−+ respectively. We define the follow-
ing bilinear forms

F++(X, Y) = Re
〈
∇X ϕ++, Y · e3 · ϕ−−

〉
,

F−−(X, Y) = Re
〈
∇X ϕ−−, Y · e3 · ϕ++

〉
,

F+−(X, Y) = Re
〈
∇X ϕ+−, Y · e3 · ϕ−+

〉
,

F−+(X, Y) = Re
〈
∇X ϕ−+, Y · e3 · ϕ+−

〉
,

and

B++(X, Y) = −
1

2
Re
〈

α(X + f X) · ϕ−+ + αhX · ϕ+−, Y · e3 · ϕ−−
〉

,

B−−(X, Y) = −
1

2
Re
〈

α(X + f X) · ϕ+− + αhX · ϕ−+, Y · e3 · ϕ++
〉

,

B+−(X, Y) = −
1

2
Re
〈

α(X + f X) · ϕ++ + αhX · ϕ−−, Y · e3 · ϕ+−
〉

,

B−+(X, Y) = −
1

2
Re
〈

α(X + f X) · ϕ−− + αhX · ϕ++, Y · e3 · ϕ−+
〉

.

We have this first lemma:

Lemma 5.1. We have

1. tr(F++) = −|~H||ϕ−−|2 + 1
2Re

〈
α
(
2 + tr( f )

)
ϕ−+ + αβ · ϕ+−, e3 · ϕ−−

〉
,

2. tr(F−−) = −|~H||ϕ++|2 + 1
2Re

〈
α
(
2 + tr( f )

)
ϕ+− + αβ · ϕ−+, e3 · ϕ++

〉
,

3. tr(F+−) = −|~H||ϕ−+|2 + 1
2Re

〈
α
(
2 + tr( f )

)
ϕ++ + αβ · ϕ−−, e3 · ϕ−+

〉
,

4. tr(F−+) = −|~H||ϕ+−|2 + 1
2Re

〈
α
(
2 + tr( f )

)
ϕ−− + αβ · ϕ++, e3 · ϕ+−

〉
,

Proof: We only compute the trace of F++, the computations for the three other
forms F−−, F+− and F−+ are the same. We have

tr(F++) = F++(e1, e1) + F++(e2, e2)

= Re
〈
∇e1

ϕ++, e1 · e3 · ϕ−−
〉
+Re

〈
∇e2 ϕ++, e2 · e3 · ϕ−−

〉

= −Re
〈
e1 · ∇e1

ϕ++, e3 · ϕ−−
〉
−Re

〈
e2 · ∇e2 ϕ++, e3 · ϕ−−

〉

= −Re
〈

Dϕ++, e3 · ϕ−−
〉
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Since Dϕ++ = ~H · ϕ−− − α
2

(
2 + tr( f )

)
ϕ−+ + α

2 β · ϕ+−, we get

tr(F++) = −Re
〈
~H · ϕ−− −

α

2

(
2 + tr( f )

)
ϕ−+ +

α

2
β · ϕ+−, e3 · ϕ−−

〉

= −Re
〈
|H|e3 · ϕ−−, e3 · ϕ−−

〉
+

Re
〈α

2

(
2 + tr( f )

)
ϕ−+ −

α

2
β · ϕ+−, e3 · ϕ−−

〉

= −|~H||ϕ−−|2 +
1

2
Re
〈

α
(
2 + tr( f )

)
ϕ−+ + αβ · ϕ+−, e3 · ϕ−−

〉

This concludes the proof.

Now, we have this second lemma which gives the defect of symmetry:

Lemma 5.2. We have

1. F++(e1, e2) = F++(e2, e1)−
1
2Re

〈(
2 + tr( f )

)
ϕ−+ − αβ · ϕ+−, e4 · ϕ−−

〉
,

2. F−−(e1, e2) = F−−(e2, e1)−
1
2Re

〈(
2 + tr( f )

)
ϕ+− − αβ · ϕ−+, e4 · ϕ++

〉
,

3. F+−(e1, e2) = F+−(e2, e1) +
1
2Re

〈(
2 + tr( f )

)
ϕ++ − αβ · ϕ−−, e4 · ϕ+−

〉
,

4. F−+(e1, e2) = F−+(e2, e1) +
1
2Re

〈(
2 + tr( f )

)
ϕ−− − αβ · ϕ++, e4 · ϕ−+

〉
.

Proof: As for the proof of the previous lemma, we only give the details for F++.
We have

F++(e1, e2) = Re
〈
∇e1

ϕ++, e2 · e3 · ϕ−−
〉

= Re
〈

e1 · ∇e1
ϕ++, e1 · e2 · e3 · ϕ−−

〉

= Re
〈
~H · ϕ−− −

α

2

(
2 + tr( f )

)
ϕ−++

α

2
β · ϕ+− − e2 · ∇e2 ϕ++, e1 · e2 · e3 · ϕ−−

〉
.

The first term is

Re
〈
~H · ϕ−−, e1 · e2 · e3 · ϕ−−

〉
= −Re

〈
e3 · ~H · ϕ−−, e1 · e2 · ϕ−−

〉

= Re
〈
~H · e3 · ϕ−−, iϕ−−

〉

= −Re
(

i|~H||ϕ−−|2
)
= 0,

where we have use that ie1 · e2 · ϕ−− = −ϕ−−, that is, e1 · e2 · ϕ−− = iϕ−− and
~H = |H|e3. Moreover, we have

−Re
〈
e2 · ∇e2 ϕ++, e1 · e2 · e3 · ϕ−−

〉
= Re

〈
∇e2 ϕ++, e2 · e1 · e2 · e3 · ϕ−−

〉

= Re
〈
∇e2 ϕ++, e1 · e3 · ϕ−−

〉

= F++(e2, e1).
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Finally, since ϕ−− ∈ Σ+, we have ω4 · ϕ−− = ϕ−−, which implies e1 · e2 · e3 ·
ϕ−− = −e4 · ϕ−− and we get

F++(e1, e2) = F++(e2, e1)−
1

2
Re
〈

α
(
2 + tr( f )

)
ϕ−+ − αβ · ϕ+−, e4 · ϕ−−

〉
.

The proof is similar for the three other forms.

By analogous computations, we also get the following lemmas. We do not
give the proof which is similar to the two previous ones.

Lemma 5.3. We have

1. tr(B++) = − 1
2Re

〈
α
(
2 + tr( f )

)
ϕ−+ + αβ · ϕ+−, e3 · ϕ−−

〉
,

2. tr(B−−) = − 1
2Re

〈
α
(
2 + tr( f )

)
ϕ+− + αβ · ϕ−+, e3 · ϕ++

〉
,

3. tr(B+−) = − 1
2Re

〈
α
(
2 + tr( f )

)
ϕ++ + αβ · ϕ−−, e3 · ϕ−+

〉
,

4. tr(B−+) = − 1
2Re

〈
α
(
2 + tr( f )

)
ϕ−− + αβ · ϕ++, e3 · ϕ+−

〉
.

Lemma 5.4. We have

1. B++(e1, e2) = B++(e2, e1) +
1
2Re

〈(
2 + tr( f )

)
ϕ−+ − αβ · ϕ+−, e4 · ϕ−−

〉
,

2. B−−(e1, e2) = B−−(e2, e1) +
1
2Re

〈(
2 + tr( f )

)
ϕ+− − αβ · ϕ−+, e4 · ϕ++

〉
,

3. B+−(e1, e2) = B+−(e2, e1)−
1
2Re

〈(
2 + tr( f )

)
ϕ++ − αβ · ϕ−−, e4 · ϕ+−

〉
,

4. B−+(e1, e2) = B−+(e2, e1)−
1
2Re

〈(
2 + tr( f )

)
ϕ−− − αβ · ϕ++, e4 · ϕ−+

〉
.

Now, we set 




A++ := F++ + B++,
A−− := F−− + B−−,
A+− := F+− + B+−,
A−+ := F−+ + B−+,

and

F+ =
A++

|ϕ−−|2
−

A−−

|ϕ++|2
and F− =

A+−

|ϕ−+|2
−

A−+

|ϕ+−|2
.

From the last four lemmas we deduce immediately that F+ and F− are symmetric
and trace-free. Moreover, by a direct computation using the conditions (25) on
the norms of ϕ+ and ϕ−, we get the following lemma:

Lemma 5.5. The symmetric operators F+ and F− of TM associated to the bilinear forms
F+ and F−, defined by

F+(X) = F+(X, e1)e1 + F+(X, e2)e2 and F−(X) = F−(X, e1)e1 + F−(X, e2)e2

for all X ∈ TM, satisfy
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1. Re 〈F+(X) · e3 · ϕ−−, ϕ++〉 = 0,

2. Re 〈F−(X) · e3 · ϕ−+, ϕ+−〉 = 0.

Proof. First, we have

A++(X, Y) = Re 〈∇X ϕ++ − α(X + f X) · ϕ−+ + αhX · ϕ+−, Y · e3 · ϕ−−〉,

Since
(

e1 · e3 ·
ϕ−−

|ϕ−−|
, e2 · e3 ·

ϕ−−

|ϕ−−|

)
is an orthonormal frame of Σ++, we have

Re
〈
∇X ϕ++ −

α

2
(X + f X) · ϕ−+ +

α

2
hX · ϕ+−, ϕ++

〉

=
A++

|ϕ−−|2
(X, e1) Re 〈e1 · e3 · ϕ−−, ϕ++〉+

A++

|ϕ−−|2
(X, e2) Re 〈e2 · e3 · ϕ−−, ϕ++〉.

Similarly,

Re 〈∇X ϕ−− −
α

2
(X + f X) · ϕ+− +

α

2
hX · ϕ−+, ϕ−−〉

=
A−−

|ϕ++|2
(X, e1) Re 〈e1 · e3 · ϕ++, ϕ−−〉+

A−−

|ϕ++|2
(X, e2) Re 〈e2 · e3 · ϕ++, ϕ−−〉

= −
A−−

|ϕ++|2
(X, e1) Re 〈e1 · e3 · ϕ−−, ϕ++〉 −

A−−

|ϕ++|2
(X, e2) Re 〈e2 · e3 · ϕ−−, ϕ++〉.

Summing these two formulas imply that

Re
〈

F+(X) · e3 · ϕ−−, ϕ++
〉
= Re 〈∇X ϕ+ −

α

2
(X + f X) · ϕ− +

α

2
hX · ϕ−, ϕ+〉.

By the condition (25) on the derivative of the norm of ϕ+ , this last expression is
zero. The proof of the second relation is similar.

Hence, the operators F+ and F− are of rank at most ≤ 1. Since they are sym-
metric and trace-free, they vanish identically.

Using again that
(

e1 · e3 ·
ϕ−−

|ϕ−−|
, e2 · e3 ·

ϕ−−

|ϕ−−|

)
is an orthonormal frame of Σ++,

we have

∇X ϕ++ = F++(X, e1)e1 · e3 ·
ϕ−−

|ϕ−−|
+ F++(X, e2)e2 · e3 ·

ϕ−−

|ϕ−−|
.

Since F++ = A++ − B++ and denoting by A++ and B++ the operators of TM
associated to A++ and B++ and defined by

A++(X) = A++(X, e1)e1 + A++(X, e2)e2, B++(X) = B++(X, e1)e1 + B++(X, e2)e2,
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we get

∇X ϕ++ =
1

|ϕ−−|2
[
A++(X) · e3 · ϕ−− − B++(X) · e3 · ϕ−−

]
. (28)

Similarly, we denote by A−− and B−− the operators of TM associated to A−−

and B−−. Thus, we have

∇X ϕ−− =
1

|ϕ++|2
[
A−−(X) · e3 · ϕ++ − B−−(X) · e3 · ϕ++

]
. (29)

Moreover, we easily get

B++(X) · e3 · ϕ−− = −
1

2
|ϕ−−|2

(
α(X + f X) · ϕ−+ + αhX · ϕ+−

)

and

B−−(X) · e3 · ϕ++ = −
1

2
|ϕ++|2

(
α(X + f X) · ϕ+− + αhX · ϕ−+

)
.

Hence,

∇X ϕ+ =
1

|ϕ−−|2
A++(X) · e3 · ϕ−− +

α

2
(X + f X) · ϕ−+ +

α

2
hX · ϕ+−

+
1

|ϕ++|2
A−−(X) · e3 · ϕ++ +

α

2
(X + f X) · ϕ+− +

α

2
hX · ϕ−+.

Now, we set A+ = A++ + A−−. From the definition of A++ and A−− and since
F+ = 0, we have A++

|ϕ−−|2
= A−−

|ϕ++|2
. Bearing in mind that |ϕ+|2 = |ϕ++|2 + |ϕ−−|2,

we get finally
A+

|ϕ+|2
=

A++

|ϕ−−|2
=

A−−

|ϕ++|2
. (30)

So, we have

∇X ϕ+ =
1

|ϕ+|2
A+(X) · e3 · ϕ+ + α(X + f X + hX) · ϕ−. (31)

Analogously, we set A+− and A−+ the operators of TM associated to A+− and
A−+, and we denote A− = A+− + A−+. Using the fact that F− = 0 we get

∇X ϕ− =
1

|ϕ+−|2
A−+(X) · e3 · ϕ+− + α(X + f X) · ϕ++ + αhX · ϕ−−

+
1

|ϕ−+|2
A+−(X) · e3 · ϕ−+ +

α

2
(X + f X) · ϕ−− +

α

2
hX · ϕ++

=
1

|ϕ−|2
A−(X) · e3 · ϕ− +

α

2
(X + f X + hX) · ϕ+. (32)

We now observe that formulas (31) and (32) also hold if ϕ++ or ϕ−−, (resp. ϕ+−

or ϕ−+) vanishes at p : indeed, assuming for instance that ϕ++(p) = 0, and
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thus that ϕ−−(p) 6= 0 since ϕ+(p) 6= 0, equation (28) holds, and, from the norm
condition in (25), we have

Re
〈
∇X ϕ−− −

α

2
(X + f X) · ϕ+− +

α

2
hX · ϕ−+, ϕ−−

〉
= 0.

Since
(

ϕ−−

|ϕ−−|
, i

ϕ−−

|ϕ−−|

)
is an orthonormal basis of Σ−−, we deduce that

∇X ϕ−− −
α

2
(X + f X) · ϕ+− +

α

2
hX · ϕ−+ = iδ(X)

ϕ−−

|ϕ−−|

for some real 1-form δ. Moreover, since ϕ++ = 0 at p, we have

Dϕ−− + α(2 + tr( f ))ϕ+− + αβ · ϕ−+ = 0,

which implies
(
δ(e1)e1 + δ(e2)e2

)
·

ϕ−−

|ϕ−−|
= 0,

and thus that δ = 0. We thus get ∇X ϕ−− = α
2 (X + f X) · ϕ+− + α

2 hX · ϕ−+ instead
of (29), which, together with (28), easily implies (31).

Now, we set

η+(X) =

(
1

|ϕ+|2
A+(X) · e3

)+

and η−(X) =

(
1

|ϕ−|2
A−(X) · e3

)−

where, if σ belongs to C l0(TM ⊕ E), we denote by σ+ := 1+ω4
2 · σ and by

σ− := 1−ω4
2 · σ the parts of σ acting on Σ+ and on Σ− only, i.e., such that

σ+ · ϕ = σ · ϕ+ ∈ Σ+ and σ− · ϕ = σ · ϕ− ∈ Σ−.

Setting η = η+ + η− we thus get

∇X ϕ = η(X) · ϕ +
α

2
(X + f X + hX) · ϕ. (33)

as claimed in Proposition 4.1.
Now, we will compute η explicitely. For this, we set A+(X, Y) := 〈A+(X), Y〉

and A−(X, Y) := 〈A−(X), Y〉. Then, the form η is given by

η(X) =
1

2|ϕ+|2
[A+(X, e1)(e1 · e3 − e2 · e4) + A+(X, e2)(e2 · e3 + e1 · e4)]

+
1

2|ϕ−|2
[A−(X, e1)(e1 · e3 + e2 · e4) + A−(X, e2)(e2 · e3 − e1 · e4)]

with
A+(X, Y) = Re

〈
∇X ϕ+ −

α

2
(X + f X + hX) · ϕ−, Y · e3 · ϕ+

〉

and
A−(X, Y) = Re

〈
∇X ϕ− −

α

2
(X + f X + hX) · ϕ+, Y · e3 · ϕ−

〉
.



Spinors and isometric immersions of surfaces in 4-dimensional products 651

Moreover, we set for any vectors X and Y tangent to M,

C(X, Y) := X · η(Y)− η(Y) · X.

C(X, Y) is a vector belonging to E which is such that

〈C(X, Y), ξ〉 =
1

|ϕ+|2
Re
〈

X · ∇Y ϕ+ − α(X + f X + hX) · Y · ϕ−, ξ · ϕ+
〉

+
1

|ϕ−|2
Re
〈

X · ∇Y ϕ− − α(X + f X + hX) · Y · ϕ+, ξ · ϕ−
〉

for all ξ ∈ E.

Lemma 5.6. The operator B defined above is symmetric in X and Y.

Proof: The proof is analogous to the symmetry of A++ proven above and uses
the Dirac equations

Dϕ+ = ~H · ϕ+ − α
[
(2 + tr( f ))ϕ −− β · ϕ−

]

and
Dϕ− = ~H · ϕ− − α

[
(2 + tr( f ))ϕ+ − β · ϕ+

]
.

Now, computing

〈C(X, Y), ξ〉 =
1

2
(〈C(X, Y), ξ〉 + 〈C(Y, X), ξ〉)

we finally obtain that C is in fact equal to the tensor B defined in the discussion
of Section 4.

Since B(ej, X) = C(ej, X) = ej · η(X)− η(X) · ej, we obtain

∑
j=1,2

ej · B(ej, X) = −2η(X)− ∑
j=1,2

ej · η(X) · ej. (34)

Writing η(X) in the form ∑
k=1,2

ek · ηk for some vectors ηk belonging to E, we easily

get that ∑
j=1,2

ej · η(X) · ej = 0. Indeed, we have

∑
j=1,2

ej · η(X) · ej = ∑
j=1,2

ej ·

(

∑
k=1,2

ek · ηk

)
· ej

= e1 · (e1 · η1 + e2 · η2) · e1 + e2 · (e1 · η1 + e2 · η2) · e2

= −η1 · e1 − e2 · η2 − e1 · η1 − η2 · e2

= e1 · η1 + η2 · e2 − e1 · η1 − η2 · e2

= 0.

Thus, from (34), we get

η(X) = −
1

2 ∑
j=1,2

ej · B(ej, X) = ζ(X).
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Therefore, Equation (33) becomes

∇X ϕ = ζ(X) · ϕ +
α

2
(X + f X + hX) · ϕ,

and the last claim in Proposition 4.1 is now proved.
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