Open Access
december 2011 On entire solutions of $f^{2}(z)+cf'(z)=h(z)$
Weiran Lü, Chungchun Yang
Bull. Belg. Math. Soc. Simon Stevin 18(5): 835-838 (december 2011). DOI: 10.36045/bbms/1323787170

Abstract

We investigate the existence of entire solutions of non-linear differential equations of type $f^{2}(z)+cf'(z)=h(z),$ where $h(z)$ is a given entire function, whose zeros form an $A-$set. As a by-product of the studies, we give a negative answer to an open question raised in [4].

Citation

Download Citation

Weiran Lü. Chungchun Yang. "On entire solutions of $f^{2}(z)+cf'(z)=h(z)$." Bull. Belg. Math. Soc. Simon Stevin 18 (5) 835 - 838, december 2011. https://doi.org/10.36045/bbms/1323787170

Information

Published: december 2011
First available in Project Euclid: 13 December 2011

zbMATH: 1243.30064
MathSciNet: MR2918649
Digital Object Identifier: 10.36045/bbms/1323787170

Subjects:
Primary: 30D35 , 34A20

Keywords: Differential equation , entire solution , generalized $A-$set , value distribution theory

Rights: Copyright © 2011 The Belgian Mathematical Society

Vol.18 • No. 5 • december 2011
Back to Top