Open Access
december 2011 An eigenvalue problem involving a degenerate and singular elliptic operator
Mihai Mihăilescu, Dušan Repovš
Bull. Belg. Math. Soc. Simon Stevin 18(5): 839-847 (december 2011). DOI: 10.36045/bbms/1323787171

Abstract

We study an eigenvalue problem involving a degenerate and singular elliptic operator on the whole space $\mathbb R^N$. We prove the existence of an unbounded and increasing sequence of eigenvalues. Our study generalizes to the case of degenerate and singular operators a result of A. Szulkin and M. Willem.

Citation

Download Citation

Mihai Mihăilescu. Dušan Repovš. "An eigenvalue problem involving a degenerate and singular elliptic operator." Bull. Belg. Math. Soc. Simon Stevin 18 (5) 839 - 847, december 2011. https://doi.org/10.36045/bbms/1323787171

Information

Published: december 2011
First available in Project Euclid: 13 December 2011

zbMATH: 1230.35078
MathSciNet: MR2918650
Digital Object Identifier: 10.36045/bbms/1323787171

Subjects:
Primary: 35J20 , 35J60 , 35J70

Keywords: Caffarelli-Kohn-Nirenberg inequality , degenerate and singular elliptic operator , eigenvalue problem

Rights: Copyright © 2011 The Belgian Mathematical Society

Vol.18 • No. 5 • december 2011
Back to Top