Translator Disclaimer
March 2006 Structure of commutative cancellative subarchimedean semigroups
Antonio M. Cegarra, Mario Petrich
Bull. Belg. Math. Soc. Simon Stevin 13(1): 101-111 (March 2006). DOI: 10.36045/bbms/1148059336

Abstract

A commutative semigroup $S$ is subarchimedean if there is an element $z\in S$ such that for every $a\in S$ there exist a positive integer $n$ and $x\in S$ such that $z^n=ax$. Such a semigroup is archimedean if this holds for all ${z\in S}$. A commutative cancellative idempotent-free archimedean semigroup is an $\frak{N}$-semigroup. We study the structure of semigroups in the title as related to $\frak{N}$-semigroups.

Citation

Download Citation

Antonio M. Cegarra. Mario Petrich. "Structure of commutative cancellative subarchimedean semigroups." Bull. Belg. Math. Soc. Simon Stevin 13 (1) 101 - 111, March 2006. https://doi.org/10.36045/bbms/1148059336

Information

Published: March 2006
First available in Project Euclid: 19 May 2006

zbMATH: 1132.20037
MathSciNet: MR2246114
Digital Object Identifier: 10.36045/bbms/1148059336

Subjects:
Primary: 20M14, 20M30

Rights: Copyright © 2006 The Belgian Mathematical Society

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.13 • No. 1 • March 2006
Back to Top