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Abstract

A commutative semigroup S is subarchimedean if there is an element z ∈ S
such that for every a ∈ S there exist a positive integer n and x ∈ S such that
zn = ax. Such a semigroup is archimedean if this holds for all z ∈ S. A
commutative cancellative idempotent-free archimedean semigroup is an N-
semigroup. We study the structure of semigroups in the title as related to
N-semigroups.

1 Introduction

The best structure theorem for a class of commutative cancellative semigroups is
that due to Tamura [6] for idempotent-free archimedean semigroups, called N-
semigroups. It amounts to a representation in the style of an abelian Schreier
extension of the group of integers by an abelian group but replacing the former
by the additive semigroup of nonnegative integers. As the archimedean property
is weakened to subarchimedean and idempotent-freeness is dropped altogether, the
same type of representation remains possible. Even though some steps were taken
in this direction, see [1], the situation still had to be clarified. This includes the role
of N-semigroups and their (left) translations as well as the role of the groups.

Some terminology and notation comprises Section 2. Section 3 contains a brief
discussion of the semigroup of left translations of an N-semigroup. The main struc-
ture theorems can be found in Section 4 and the last Section 5 includes some com-
plementary results.
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2 Notation and terminology

We generally follow the book [5]. Throughout S denotes a commutative cancellative
semigroup. We shall thus omit these qualifiers, in particular all groups will be
abelian. The identity of a monoid S will usually be denoted by e. We shall often
use the following semigroups (under addition): P - positive integers, N -nonnegative
integers. If ρ is an equivalence relation on a set X and x ∈ X, then xρ denotes the
ρ-class of x.

On S the relation N defined by

a N b ⇐⇒ am = bx and bn = ay for some m,n ∈ P and x, y ∈ S ,

is the least semilattice congruence on S. Its classes are the archimedean components
of S, components for short. The semigroup S is archimedean if it has only one
component; subarchimedean if the semilattice S/N has a least element, the corre-
sponding component is the pivot of S, denoted by PivS. If it exists, the pivot of S
is the unique component of S which is an ideal of S and

PivS = {a ∈ S | for every b ∈ S, an = bx for some n ∈ P and x ∈ S}.

An N-semigroup was defined in Section 1.
A transformation λ on S is a left translation of S if (λa)b = λ(ab) (a, b ∈ S).

For a ∈ S, define a transformation λa by λax = ax (x ∈ S). Denote the set of all
left translations of S by Λ(S). The mapping πS defined by

πS : a 7→ λa (a ∈ S)

is the canonical homomorphism of S into Λ(S). Its image in Λ(S) is denoted by Γ(S).
By commutativity and cancellation, we have that Λ(S) ∼= Ω(S), the translational
hull of S. For a complete discussion of this subject, see ([5], Section III.1).

3 Left translations of an N-semigroup

We consider here the semigroup of all left translations of an N-semigroup relative
to the properties of its pivot. Here are some simple properties of Λ(S) and Γ(S).

Lemma 3.1. Let S be a commutative cancellative semigroup.
(i) Λ(S) is a commutative cancellative semigroup.
(ii) For any a ∈ S and λ ∈ Λ(S), we have λλa = λλa.
(iii) Γ(S) is an ideal of Λ(S).
(iv) πS is an isomorphism of S onto Γ(S).

Proof. This requires straightforward verification which is omitted. Part (ii) is proved
in ([5], Lemma III.1.6, part i)). Note that parts (i) and (ii) imply part (iii). �

We now explore briefly the mutual relationship of Γ(S) and Λ(S) for an N-
semigroup S in the context of archimedean components. Let

Ψ(S) = {λ ∈ Λ(S) | λn ∈ Γ(S) for some n ∈ P}.
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Lemma 3.2. Let S be an N-semigroup. Then PivΛ(S) = Ψ(S).

Proof. Let λ ∈ PivΛ(S). Then for any a ∈ S, there exist n ∈ P and λ′ ∈ Λ(S) such
that λn = λaλ

′. Since Γ(S) is an ideal of Λ(S), we get λn ∈ Γ(S). Conversely, let
λ ∈ Ψ(S) so that λn = λa for some a ∈ S and n ∈ P, and let λ′ ∈ Λ(S). Then
λ′λa ∈ Γ(S) and since Γ(S) is archimedean by Lemma 3.1(iv), λm

a = λ′λaλb for some
b ∈ S. It follows that λnm = λ′λab which proves that λ ∈ PivΛ(S). �

An N-semigroup S is said to be steady if for any a, b ∈ S, aS ⊆ bS and a2 ∈ b2S
imply that a ∈ bS.

Proposition 3.3. The following conditions on a N-semigroup S are equivalent.
(i) S is steady.
(ii) Γ(S) = Ψ(S).
(iii) Γ(S) is an archimedean component of Λ(S).
(iv) PivΛ(S) = Γ(S).
In such a case,
(α) Λ(S) is under inclusion a maximal commutative cancellative semigroup hav-

ing Γ(S) as pivot,
(β) if T is a commutative cancellative semigroup having S as a pivot, then the

canonical homomorphism πS extends uniquely to an embedding of T into Λ(S).

Proof. (i) is equivalent to (ii). This is a consequence of ([3], Theorem 6).
(ii) implies (iii). This follows directly from Lemma 3.2.
(iii) implies (iv). It suffices to observe that by Lemma 3.1(iii), Γ(S) is an ideal

of Λ(S).
(iv) implies (ii). This is immediate from Lemma 3.2.
Under the hypothesis that part (iv) holds, both (α) and (β) follow easily by ap-

plying ([5], Corollary III.5.15, Theorems III.5.9 and III.1.12, and Corollary III.5.5).
�

Note that the identity mapping on S is the identity element of Λ(S). Since Λ(S)
contains an ideal, namely Γ(S), which is an N-semigroup, Λ(S) is a commutative
cancellative subarchimedean nongroup monoid even without the hypothesis that S
be steady.

It is of some interest to introduce the following concept. A commutative can-
cellative semigroup S with pivot P is p-maximal (for pivot maximal) if for any
commutative cancellative oversemigroup T of S with PivT = P , we have T = S.
We shall now see that these semigroups are easily characterized.

Lemma 3.4. Let S be a (commutative cancellative) semigroup with pivot P . Then
S is p-maximal if and only if the function

χ : s 7→ λs|P (s ∈ S)

maps S onto Λ(P ).

Proof. For any semigroup T having P as its pivot, by ([5], Corollary III.5.18), T is
commutative cancellative if and only if T is a dense extension of P . The assertion
now follows by ([5], Corollary III.5.5). �
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This leads to the following embedding.

Corollary 3.5. Every commutative cancellative subarchimedean semigroup S with
pivot P is embeddable into a p-maximal commutative cancellative semigroup with
pivot P , in particular into Λ(P ).

Proof. This follows easily from Lemma 3.4. �

If the pivot P of S is not a group, then it is an N-semigroup. Hence we have the
following consequence.

Corollary 3.6. For an N-semigroup P , any two p-maximal commutative semi-
groups with pivot P are P -isomorphic.

4 Subarchimedean semigroups

Our structure theorems are based on a construction related to abelian Schreier
extensions of abelian groups as adapted to semigroups by T. Tamura to describe
N-semigroups. We offer here a somewhat modified version of this construction.

Let G be an abelian group and I : G×G −→ N be a function which satisfies the
axioms:

(A) I(a, b) + I(ab, c) = I(a, bc) + I(b, c) (a, b, c ∈ G),
(C) I(a, b) = I(b, a) (a, b ∈ G),
(Ni) I(e, e) = i (i = 0, 1).

On N×G define a multiplication by

(M) (m, a)(n, b) = (m+ n+ I(a, b), ab).

We denote the resulting groupoid by Ni(G, I) where i = 0, 1.
The content of the following lemma was observed many times.

Lemma 4.1. If S is idempotent-free, then xy 6= x for all x, y ∈ S.

In the statement of the next lemma, we exhibit the basic construction due to
Tamura [6], see also [1], and will use it in the proof of Proposition 4.4 to suitably
modify each step. For z ∈ S, let (z) denote the monogenic subsemigroup of S
generated by the element z.

Lemma 4.2. Let S be a subarchimedean idempotent-free semigroup and let z ∈ PivS.
Define a relation ρ on S by

a ρ b ⇔ zma = znb for some m,n ∈ P.

(i) The relation ρ is a group congruence on S with unit class equal to (z).
(ii) Every element of S admits a unique representation of the form znp for some

n ∈ N and p ∈ S \ zS.
(iii) For every x ∈ S, there exists a unique element pxρ such that x ρ pxρ and

pxρ ∈ S \ zS.
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(iv) For any a, b ∈ G = S/ρ define I(a, b) as the unique non-negative integer
satisfying papb = zI(a,b)pab. Then the function I : G×G→ N satisfies (A), (C) and
(N1).

(v) The mapping χ defined by

χ : (m, a) 7→ zmpa ((m, a) ∈ N1(G, I))

is an isomorphism of N1(G, I) onto S.

Proof. (i) Simple verification shows that ρ is a congruence. Letting e = zρ, we get
for any x ∈ S, (xρ)e = (xz)ρ = xρ and e is the identity of S/ρ. Further, zn = xu
for some n ∈ P and u ∈ S which yields e = (xρ)(uρ). Therefore S/ρ is an abelian
group. If x ρ z, then zmx = zn for some m,n ∈ P; Lemma 4.1 implies that m < n
so that x = zn−m. Hence zρ = (z).

(ii) Let x ∈ S. Then zk = xy for some k ∈ P and y ∈ S. Lemma 4.1 implies that
x /∈ zkS. Hence there is a greatest n ∈ N for which x = znp for some p ∈ S \ zS.

Assume that zmp = znq where p, q ∈ S \ zS. If m < n, then we get p = zn−mq ∈
zS contradicting the choice of p. Similarly n < m is impossible. Thus m = n whence
also p = q, proving uniqueness.

(iii) By part (ii), for any x ∈ S, we have x = znp for some p ∈ S \ zS. Hence
xρ = pρ. If q ∈ S \ zS is such that p ρ q, then zmp = zkq. Again by part (ii) we
conclude that m = n whence p = q.

(iv) For any a, b ∈ G = S/ρ, the existence and uniqueness of I(a, b) are guaran-
teed by parts (ii) and (iii). If also c ∈ G, we get

(papb)pc = zI(a,b)pabpc = zI(a,b)zI(ab,c)pabc = zI(a,b)+I(ab,c)pabc ,

pa(pbpc) = paz
I(b,c)pbc = zI(b,c)zI(a,bc)pabc = zI(a,bc)+I(b,c)pabc,

which by part (ii) implies condition (A). Condition (C) follows from commutativity.
By Lemma 4.1, we have z /∈ zS so that z = pe. Hence

z2 = pepe = zI(e,e)pe2 = zI(e,e)z

and by cancellation, we get I(e, e) = 1. Therefore (N1) holds as well.
(v) It follows from part (ii) that χ is bijective. For any (m, a), (n, b) ∈ N1(G, I),

we obtain

(m, a)χ(n, b)χ = (zmpa)(z
npb) = zmzn

(
zI(a,b)pab

)
= zm+n+I(a,b)pab

= (m+ n+ I(a, b), ab)χ =
(
(m, a)(n, b)

)
χ .

Therefore χ is an isomorphism. �

We are now able to prove the first statement needed in the general structure
theorem cf. [6] and ([1], Section 3).

Proposition 4.3. The groupoid N1(G, I) is a commutative cancellative subar-
chimedean idempotent-free semigroup. Conversely, every semigroup with these prop-
erties is isomorphic to some N1(G, I).
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Proof. Direct part. Associativity follows from axiom (A), commutativity from the
commutativity of G and axiom (C), and cancellation from cancellation in G and N
by straightforward verification. For any (m, a) ∈ S,

(0, e)m+I(a,a−1)+1 = (m+ I(a, a−1), e) = (m, a)(0, a−1)

and (0, e) is a pivot element. Hence S is subarchimedean. If (m, a)2 = (m, a), then
2m+ I(a, a) = m and a2 = a whence m+ 1 = 0 by (N1) which is impossible. Hence
S is idempotent-free.

Converse. This follows directly by Lemma 4.2 �

Next we characterize the groupoid N0(G, I), cf. ([1], Section 3).

Proposition 4.4. The groupoid N0(G, I) is a commutative cancellative subarchi-
medean nongroup monoid. Conversely, every semigroup with these properties is
isomorphic to some N0(G, I).

Proof. Direct part. Associativity follows from axiom (A), commutativity from the
commutativity of G and axiom (C), and cancellation from cancellation in G and N
by straightforward verification. For any (m, a) ∈ S,

(1, e)m+I(a,a−1) = (m+ I(a, a−1), e) = (m, a)(0, a−1)

and (1, e) is a pivot element. Thus S is subarchimedean. Clearly (0, e)2 = (0, e) and
hence (0, e) is the identity of N0(G, I) and (1, e) has no inverse.

Converse. We follow the steps of the proof of Lemma 4.2 with necessary changes.
Let e be the idempotent of S.

(i) zz = z2e implies that e ∈ zρ so that (z)∪{e} ⊆ zρ. Let x ρ z. Then zmx = zn

for some m,n ∈ P. If m = n, then x = e; if m < n, then x = zm−n; if m > n, then
zm−nx = e which is impossible since z ∈ PivS and e /∈ PivS since S is not a group.
In any case, we get x ∈ (z) ∪ {e}. Therefore zρ = (z) ∪ {e}.

(ii) Let x ∈ S. Then zk = xy for some y ∈ S. If x ∈ zk+1S, then z would
be invertible which is impossible because z is in PivS and S is not a group, hence
x = znp for a greatest n ∈ N and some p ∈ S \ zS.

(iii) The argument is the same as before.
(iv) In particular pepe = zI(e,e)pe where pe = e so that e = zI(e,e) and I(e, e) = 0,

where e denotes the identity of both S and G.
(v) This is the same as before. �

We are finally ready for the structure theorem in which, exceptionally, S stands
for a not necessarily commutative cancellative semigroup .

Theorem 4.5. Let S be an arbitrary semigroup which is not a group. Then the
following conditions are equivalent.

(i) S is commutative cancellative and subarchimedean.
(ii) S is isomorphic to some N0(G, I) or N1(G, I).
(iii) There exists an N-semigroup T and a semigroup S ′ such that Γ(T )⊆S ′⊆Λ(T )

and S ∼= S ′.
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Proof. The equivalence of parts (i) and (ii) is a direct consequence of Propositions
4.3 and 4.4.

(i) implies (iii) Let T = PivS. Clearly T is an N-semigroup. Since T is an ideal
of S, the map

χ : s 7→ λs|T (s ∈ S)

is a homomorphism of S into Λ(T ) whose restriction to T is the canonical homomor-
phism πT . Cancellation in S immediately implies that χ is injective. Hence S ′ = χS
has the required property.

(iii) implies (i). As we observed in Lemma 3.1(i), Λ(T ) is a commutative can-
cellative semigroup, and in particular so is S ′ and thus also S. By Lemma 3.1(iv),
the mapping πT is an isomorphism, and since T is archimedean, we obtain that Γ(T )
is archimedean, and is thus contained in a component, say C, of Λ(T ). Since Γ(T )
is an ideal of Λ(T ), Λ(T ) cannot have a lower component than C which proves that
C is the pivot of Λ(T ). Hence C ∩ S ′ must be the pivot of S ′. Therefore S ′ is also
subarchimedean and hence so is S. �

Part (iii) of the above theorem has the general form of a part of the Jacobson
structure theorem for primitive rings with a nonzero socle, see ([2], p.75, Structure
Theorem, part (3)). It is interesting to note that in this comparison Γ(S) corresponds
to the (nonzero) socle.

We now explore the natural relationship of the two classes of subarchimedean
semigroups.

Lemma 4.6. Let T be a subarchimedean semigroup and an ideal of S. Then S is
subarchimedean.

Proof. Straightforward. �

Proposition 4.7. Let S be a subarchimedean nongroup. Then Λ(S) is a sub-
archimedean commutative cancellative nongroup monoid.

Proof. Lemma 3.1 provides the following information: by part (i), Λ(S) is com-
mutative and cancellative, by part (ii), Γ(S) is an ideal of Λ(S) and by part (iv),
S ∼= Γ(S). Then Λ(S) has an ideal which is subarchimedean. By Lemma 4.6, Λ(S)
is subarchimedean. The identity mapping ιS is the identity element of Λ(S) and is
not contained in Γ(S). Therefore Λ(S) is a nongroup monoid. �

As a converse to the proposition, we have a more elaborate result.
If I : G×G→ N is a function, let (I + 1)(a, b) = I(a, b) + 1 for all a, b ∈ G.

Theorem 4.8. Let S = N0(G, I) and set

T = {(m, a) ∈ S | m > 0} .

(i) T is an N-semigroup and an ideal of S.
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(ii) The mapping

χ : (m, a) 7→ (m− 1, a)
(
(m, a) ∈ T

)
is an isomorphism of T onto N1(G, I + 1)

(iii) The mappings

ϕ : x 7→ λx|T (x ∈ S) ,
ψ : λ 7→ (m, a) (λ ∈ Λ(T )) ,

where λ(1, e) = (m + 1, a) and e is the identity of G, are mutually inverse isomor-
phisms between S and Λ(T ).

Proof. (i) Obviously T is an ideal of S and is idempotent-free. For any (m, a), (n, b) ∈
T we have (m, a)p = (n, b)(k, c) for some p ∈ P and (k, c) ∈ S since T ⊆ PivS. Hence
(m, a)p+1 = (n, b)(k′, c′), where (k′, c′) = (k, c)(m, a) belongs to T , and thus T is
archimedean.

(ii) Indeed, for (m, a), (n, b) ∈ T , we get

χ(m, a)χ(n, b) = (m− 1, a)(n− 1, b) = (m+ n+ I(a, b)− 1, ab)

= χ(m+ n+ I(a, b), ab) = χ
(
(m, a)(n, b)

)
and χ is a homomorphism. Clearly χ is a bijection between the sets P × G and
N×G.

(iii) Clearly ϕ maps S into Λ(S), and for x, y ∈ S, we have

(ϕx)(ϕy) = (λx|T )(λy|T ) = (λxλy)|T = λxy|T = ϕ(xy)

and ϕ is a homomorphism. Obviously ψ maps Λ(T ) into S.
For (m, a) ∈ S, we obtain

λ(m,a)|T (1, e) = (m, a)(1, e) = (m+ 1, a)

and thus ψϕ(m, a) = (m, a) so that ψϕ = ιS, the identity mapping on S. For
λ ∈ Λ(T ), we first have λ(1, e) = (m + 1, a) for some m ∈ N and a ∈ G. Hence
(m, a) ∈ S. For (n, b) ∈ T , we get

[λ(n, b)](1, e) = [λ(1, e)](n, b) = (m+ 1, a)(n, b)
= (m+ 1 + n+ I(a, b), ab) = (m+ n+ I(a, b), ab)(1, e)

so that
λ(n, b) = (m+ n+ I(a, b), ab) = (m, a)(n, b)

and thus λ = λ(m,a)|T . Therefore

ϕψλ = φ(m, a) = λ(m,a)|T = λ

which proves that ϕψ = ιΛ(T ), the identity mapping on Λ(T ). �

Proposition 4.7 indicates that if S is idempotent-free and subarchimedean, then
Λ(S) is a subarchimedean nongroup monoid (this proposition is trivial if S is a
monoid). Theorem 4.8 implies that if S is a subarchimedean monoid, then an ideal
T of S has the properties: T is idempotent-free, subarchimedean and Λ(T ) ∼= S.
This establishes a close relationship between these two classes of subarchimedean
semigroups: idempotent-free and nongroup monoids. The latter are, up to isomor-
phism, precisely Λ(T ) for T belonging to the former.
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5 Supplements

We shall now characterize the semigroups in Theorem 4.5 in terms of the Malcev
product. To this end, we need the following concepts.

Let ρ be a congruence on S and B a class of semigroups. If S/ρ ∈ B, we say that
ρ is a B-congruence. If every idempotent ρ-class belongs to B, we say that ρ is over
B.

We introduce the following notation:
N0 (respectively, N1)- infinite cyclic monoids (respectively, semigroups),

N2 = N0 ∪N1;
P0 (respectively, P1)- commutative cancellative subarchimedean nongroup monoids

(respectively, idempotent-free semigroups), P2 = P0 ∪ P1;
A- abelian groups, C- commutative cancellative semigroups.
The Malcev product of Ni and A in the class C is defined by

(Ni ◦ A)C = {S ∈ C | S has a group congruence over Ni}, i = 0, 1, 2.

Proposition 5.1. For i = 0, 1, 2, we have (Ni ◦ A)C = Pi.

Proof. We treat only the case i = 1; the proof for i = 0 follows along the same lines
with obvious modifications. The case i = 2 follows immediately from cases i = 0, 1.

Let S ∈ (N1 ◦ A)C and ρ be a congruence on S over N1 and S/ρ ∈ A. Let
ϕ : S → S/ρ be the natural epimorphism, and set A = ϕ−1e where e is the identity
of G = S/ρ. Then A is the only ρ-class which is a subsemigroup of S and, by
hypothesis, A is an infinite cyclic semigroup. Therefore S is idempotent-free.

Let a be the generator of A and b ∈ S. Then ϕa = e and ϕb has an inverse, say
ϕc. Hence ϕa = (ϕb)(ϕc) so that a ρ bc . Then bc = an for some n ∈ P. Therefore
a ∈ PivS and thus S is subarchimedean.

Consequently S ∈ P1. We have proved that (N1 ◦ A)C ⊆ P1.
For the opposite inclusion, let S ∈ P1. By Theorem 4.5, S ∼= N1(G, I) for some

G ∈ A and suitable function I : G × G → N. The projection π : (m, a) 7→ a is a
homomorphism of N1(G, I) onto G. The mapping (m, e) 7→ m+1 is an isomorphism
of π−1e onto P where e is the identity of G. Therefore the congruence induced on
N1(G, I) by π has all the requisite properties which implies that N1(G, I) ∈ (N1◦A)C
and thus by isomorphism, also S ∈ (N1 ◦ A)C. �

Proposition 5.2. The class of commutative (sub)archimedean semigroups is closed
under finite direct products.

Proof. Let S1, · · · , Sn be commutative (sub)archimedean semigroups and S =
n∏

i=1
Si.

Let (ai), (bi) ∈ S (where ai ∈ PivSi for i = 1, · · · , n). Then ami
i = bici for some

mi ∈ P and ci ∈ Si, i = 1, · · · , n. Letting m = m1 · · ·mn, we get

(ai)
m = (am

i ) =
(
(ami

i )
m
mi

)
=

(
b

m
mi
i

)(
c

m
mi
i

)
= (bi)

(
b

m
mi

−1

i c
m
mi
i

)
and S is (sub)archimedean. �
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The classes Pi have very restricted closure properties. It follows from Lemma
5.2 that for i = 0, 1, 2, Pi is closed under finite direct products. If I is an ideal of
a commutative subarchimedean semigroup T , then a simple argument shows that
PivS ∩ I = PivI. As a consequence, we have that P1 and P2 are closed for taking
ideals; obviously P0 is not.

Proposition 5.3.
(i) For i = 0 or i = 1 and S = Ni(G, I), the pivot of S equals

PivS = {(m, a) ∈ S | either m > 0 or I(a, an) > 0 for some n ∈ P} .

(ii) For S = N0(G, I), the identity element is (0, e) and the group of units

U(S) = {(0, a) ∈ S | I(a, a−1) = 0} .

Proof. (i) We treat the case i = 0; the case i = 1 requires a similar, but not identical,
argument.

Assume that I(a, an) = 0 for all n ∈ P. Then (0, a)n = (0, an) for all n ∈ P.
Hence an equality of the form (0, a)n = (1, e)(m,x) is not possible in S and hence
(0, a) /∈ PivS.

For the opposite inclusion, if m > 0, then the equality (m, a) = (1, e)(m−1, a) in
conjunction with (1, e) ∈ PivS, proved in the direct part of Proposition 4.4, implies
that (m, a) ∈ PivS. We consider next the element (0, a) where I(a, an) > 0 for some
n ∈ P. Then

(0, a)n+1 = (
n∑

j=1

I(a, aj), an+1)

where
n∑

j=1
I(a, aj) > 0 so that (0, a)n+1 ∈ PivS by the first part of this paragraph.

But then (0, a) ∈ PivS.
(ii) The simple verification is omitted. �

This clarifies somewhat the “size” of PivS and U(S) within S.
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