Translator Disclaimer
September 2003 Equivariant group cohomology and Brauer group
A. M. Cegarra, A.R. Garzón
Bull. Belg. Math. Soc. Simon Stevin 10(3): 451-459 (September 2003). DOI: 10.36045/bbms/1063372349

Abstract

In this paper we prove that, for any Galois finite field extension $F/K$ on which a separated group of operators $\Gamma$ is acting, there is an isomorphism between the group of equivariant isomorphism classes of finite dimensional central simple $K$-algebras endowed with a $\Gamma$-action and containing $F$ as an equivariant strictly maximal subfield and the second equivariant cohomology group of the Galois group of the extension.

Citation

Download Citation

A. M. Cegarra. A.R. Garzón. "Equivariant group cohomology and Brauer group." Bull. Belg. Math. Soc. Simon Stevin 10 (3) 451 - 459, September 2003. https://doi.org/10.36045/bbms/1063372349

Information

Published: September 2003
First available in Project Euclid: 12 September 2003

zbMATH: 1036.12002
MathSciNet: MR2017455
Digital Object Identifier: 10.36045/bbms/1063372349

Subjects:
Primary: 12G05, 16H05, 16K50, 20J06

Rights: Copyright © 2003 The Belgian Mathematical Society

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.10 • No. 3 • September 2003
Back to Top