Abstract
We consider an N by N real or complex generalized Wigner matrix , whose entries are independent centered random variables with uniformly bounded moments. We assume that the variance profile, , satisfies , for all and for all with some constant . We establish Gaussian fluctuations for the linear eigenvalue statistics of on global scales, as well as on all mesoscopic scales up to the spectral edges, with the expectation and variance formulated in terms of the variance profile. We subsequently obtain the universal mesoscopic central limit theorems for the linear eigenvalue statistics inside the bulk and at the edges, respectively.
Citation
Yiting Li. Yuanyuan Xu. "On fluctuations of global and mesoscopic linear statistics of generalized Wigner matrices." Bernoulli 27 (2) 1057 - 1076, May 2021. https://doi.org/10.3150/20-BEJ1265
Information